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CHAPTER
ONE

INTRODUCTION

Brian is a clock driven simulator for spiking neural networks, written in the Python programming language.

The simulator is written almost entirely in Python. The idea is that it can be used at various levels of abstraction
without the steep learning curve of software like Neuron, where you have to learn their own programming language
to extend their models. As a language, Python is well suited to this task because it is easy to learn, well known and
supported, and allows a great deal of flexibility in usage and in designing interfaces and abstraction mechanisms. As
an interpreted language, and therefore slower than say C++, Python is not the obvious choice for writing a computa-
tionally demanding scientific application. However, the SciPy module for Python provides very efficient linear algebra
routines, which means that vectorised code can be very fast.

Here’s what the Python web site has to say about themselves:

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and
a simple but effective approach to object-oriented programming. Python’s elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for
all major platforms from the Python Web site, http://www.python.org/, and may be freely distributed. The
same site also contains distributions of and pointers to many free third party Python modules, programs
and tools, and additional documentation.

As an example of the ease of use and clarity of programs written in Brian, the following script defines and runs a
randomly connected network of 4000 integrate and fire neurons with exponential currents:

from brian import =

eqS:’ rr

dv/dt = (ge+gi-(v+49xmV))/ (20+«ms) : volt
dge/dt = -ge/ (5%*ms) : volt

dgi/dt = —-gi/ (10*ms) : volt

rrr

P=NeuronGroup (4000, model=eqgs, threshold=-50+mV, reset=-60+mV)
P.v=-60+mV

Pe=P.subgroup (3200)

Pi=P.subgroup (800)

Ce=Connection (Pe, P, ge’ ,weight=1.62+mV, sparseness=0.02)
Ci=Connection(Pi,P,’gi’,weight=-9+mV, sparseness=0.02)
M=SpikeMonitor (P)

run (1+xsecond)

raster_plot (M)

show ()

As an example of the output of Brian, the following two images reproduce figures from Diesmann et al. 1999 on
synfire chains. The first is a raster plot of a synfire chain showing the stabilisation of the chain.



http://www.python.org
http://www.neuron.yale.edu/neuron/
http://www.scipy.org/
http://www.python.org/

Brian Documentation, Release 1.4.1

Synfire chain raster plot
12 - .

10} S .

.-l-

—= o §
} o
&

Layer
[=i]

. . * .
[i] 20 40 il BO 1040
Time {in ms)

The simulation of 1000 neurons in 10 layers, each all-to-all connected to the next, using integrate and fire neurons with
synaptic noise for 100ms of simulated time took 1 second to run with a timestep of 0.1ms on a 2.4GHz Intel Xeon
dual-core processor. The next image is of the state space, figure 3:
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The figure computed 50 averages for each of 121 starting points over 100ms at a timestep of 0.1ms and took 201s to
run on the same processor as above.
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CHAPTER
TWO

INSTALLATION

If you already have a copy of Python 2.5-2.7, try the Quick installation below, otherwise take a look at Manual
installation.

2.1 Quick installation

2.1.1 easy_install / pip
The easiest way to install the most recent version of Brian if you already have a version of Python 2.5-2.7 including
the easy_install script is to simply run the following in a shell:

easy_install brian

This will download and install Brian and all its required packages (NumPy, SciPy, etc.).
Similarly, you can use the pip utility:

pip install brian

Note that there are some optimisations you can make after installation, see the section below on Optimisations.

2.1.2 Debian/Ubuntu packages

If you use a Debian-based Linux distribution (in addition to Debian itself, this includes for example Ubuntu or Linux
Mint), you can install Brian directly from your favourite package manager (e.g. Synaptic or the Ubuntu Software
Centre), thanks to the packages provided by the NeuroDebian team.

The package is called python-brian, the documentation and tutorials can be found in python-brian-doc. To
install these packages from the command-line use:

sudo apt-get install python-brian python-brian-doc

Note that in contrast to the procedure described above for easy_install / pip, you will not necessarily get the most
recent version of Brian this way. On the other hand, you do not have to take care of future updates yourself, as the
Brian package gets updated with the standard update process. Additionally, the Brian package already includes all
the compiled C code mentioned in the Optimisations section. Another way to install Brian which combines these
advantages with up-to-date versions is to directly add the NeuroDebian repository to your software sources.



http://neuro.debian.net/
http://neuro.debian.net/index.html#repository-howto
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2.2 Manual installation

Installing Brian requires the following components:
1. Python version 2.5-2.7.
NumPy and Scipy packages for Python: an efficient scientific library.
PyLab package for Python: a plotting library similar to Matlab (see the detailed installation instructions).

SymPy package for Python: a library for symbolic mathematics (not mandatory yet for Brian).

A

Brian itself (don’t forget to download the extras.zip file, which includes examples, tutorials, and a complete
copy of the documentation). Brian is also a Python package and can be installed as explained below.

Fortunately, Python packages are very quick and easy to install, so the whole process shouldn’t take very long.
We also recommend using the following for writing programs in Python (see details below):

1. Eclipse IDE with PyDev

2. IPython shell

Finally, if you want to use the (optional) automatic C++ code generation features of Brian, you should have the gcc
compiler installed (on Cygwin if you are running on Windows).

Mac users: The Enthought Python Distribution (EPD ) is free for academics and contains all the libraries necessary to
run Brian. Otherwise, the Scipy Superpack for Intel OS X also includes versions of Numpy, Scipy, Pylab and IPython.

Windows users: the Python(x,y) distribution includes all the packages (including Eclipse and IPython) above except
Brian (which is available as an optional plugin).

Another option is the Anaconda distribution, which also includes all the packages above except Brian and Eclipse.

2.2.1 Installing Python packages

On Windows, Python packages (including Brian) are generally installed simply by running an .exe file. On other
operating systems, you can download the source release (typically a compressed archive .tar.gz or .zip that you need
to unzip) and then install the package by typing the following in your shell:

python setup.py install

2.2.2 Installing Eclipse

Eclipse is an Integrated Development Environment (IDE) for any programming language. PyDev is a plugin for
Eclipse with features specifically for Python development. The combination of these two is excellent for Python
development (it’s what we use for writing Brian).

To install Eclipse, go to their web page and download any of the base language IDEs. It doesn’t matter which one, but
Python is not one of the base languages so you have to choose an alternative language. Probably the most useful is the
C++ one or the Java one. The C++ one can be downloaded here.

Having downloaded and installed Eclipse, you should download and install the PyDev plugin from their web site. The
best way to do this is directly from within the Eclipse IDE. Follow the instructions on the PyDev manual page.
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http://www.python.org/download/
http://www.scipy.org/Download
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/installing.html
http://code.google.com/p/sympy/
http://neuralensemble.org/trac/brian/wiki/Downloads
http://www.eclipse.org/
http://pydev.sourceforge.net/
http://ipython.scipy.org/moin/
http://www.cygwin.com/
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http://www.eclipse.org/
http://www.eclipse.org/cdt/downloads.php
http://pydev.sourceforge.net/
http://pydev.org/manual_101_root.html
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2.2.3 Installing IPython

[Python is an interactive shell for Python. It has features for SciPy and PyLab built in, so it is a good choice for
scientific work. Download from their page. If you are using Windows, you will also need to download PyReadline
from the same page.

2.2.4 C++ compilers

The default for Brian is to use the gcc compiler which will be installed already on most unix or linux distributions. If
you are using Windows, you can install cygwin (make sure to include the gcc package). Alternatively, some but not
all versions of Microsoft Visual C++ should be compatible, but this is untested so far. See the documentation for the
SciPy Weave package for more information on this. Mac users should have XCode installed so as to have access to
gce and hence take advantage of brian compiled code. See also the section on Compiled code.

2.3 Testing

You can test whether Brian has installed properly by running Python and typing the following two lines:

from brian import =«
brian_sample_run ()

A sample network should run and produce a raster plot.

2.4 Optimisations

After a successful installation, there are some optimisations you can make to your Brian installation to get it running
faster using compiled C code. We do not include these as standard because they do not work on all computers, and
we want Brian to install without problems on all computers. Note that including all the optimisations can result in
significant speed increases (around 30%).

These optimisations are described in detail in the section on Compiled code.

2.3. Testing 7
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CHAPTER
THREE

GETTING STARTED

3.1 Tutorials

These tutorials cover some basic topics in writing Brian scripts in Python. The complete source code for the tutorials
is available in the tutorials folder in the extras package.

3.1.1 Tutorials for Python and Scipy

Python

The first thing to do in learning how to use Brian is to have a basic grasp of the Python programming language. There
are lots of good tutorials already out there. The best one is probably the official Python tutorial. There is also a course
for biologists at the Pasteur Institute: Introduction to programming using Python.

NumPy, SciPy and Pylab

The first place to look is the SciPy documentation website. To start using Brian, you do not need to understand much
about how NumPy and SciPy work, although understanding how their array structures work will be useful for more
advanced uses of Brian.

The syntax of the Numpy and Pylab functions is very similar to Matlab. If you already know Matlab, you could read
this tutorial: NumPy for Matlab users and this list of Matlab-Python translations (pdf version here). A tutorial is also
available on the web site of Pylab.

3.1.2 Tutorial 1: Basic Concepts

In this tutorial, we introduce some of the basic concepts of a Brian simulation:
* Importing the Brian module into Python
 Using quantities with units
* Defining a neuron model by its differential equation
* Creating a group of neurons
* Running a network
* Looking at the output of the network

* Modifying the state variables of the network directly



http://docs.python.org/tut/
http://www.pasteur.fr/formation/infobio/python/
http://docs.scipy.org/doc/
http://scipy.org/NumPy_for_Matlab_Users
http://mathesaurus.sourceforge.net/
http://brian.di.ens.fr/matlab-python-xref.pdf
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
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* Defining the network structure by connecting neurons

* Doing a raster plot of the output

* Plotting the membrane potential of an individual neuron
The following Brian classes will be introduced:

* NeuronGroup

* Connection

e SpikeMonitor

* StateMonitor

We will build a Brian program that defines a randomly connected network of integrate and fire neurons and plot its
output.

This tutorial assumes you know:

* The very basics of Python, the import keyword, variables, basic arithmetical expressions, calling functions,
lists

* The simplest leaky integrate and fire neuron model
The best place to start learning Python is the official tutorial:
http://docs.python.org/tut/

Tutorial contents

Tutorial 1a: The simplest Brian program

Importing the Brian module

The first thing to do in any Brian program is to load Brian and the names of its functions and classes. The standard
way to do this is to use the Python from ... import = statement.

from brian import =«

Integrate and Fire model

The neuron model we will use in this tutorial is the simplest possible leaky integrate and fire neuron, defined by the
differential equation:

tau dV/dt = -(V-El)

and with a threshold value Vt and reset value Vr.

Parameters

Brian has a system for defining physical quantities (quantities with a physical dimension such as time). The code
below illustrates how to use this system, which (mostly) works just as you’d expect.

tau = 20 x msecond # membrane time constant

vVt = -50 * mvolt # spike threshold

Vr = -60 % mvolt # reset value

El = -60 » mvolt # resting potential (same as the reset)
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The built in standard units in Brian consist of all the fundamental SI units like second and metre, along with a selection
of derived SI units such as volt, farad, coulomb. All names are lowercase following the SI standard. In addition, there
are scaled versions of these units using the standard SI prefixes m=1/1000, K=1000, etc.

Neuron model and equations

The simplest way to define a neuron model in Brian is to write a list of the differential equations that define it. For
the moment, we’ll just give the simplest possible example, a single differential equation. You write it in the following
form:

dx/dt = f£(x) : unit
where x is the name of the variable, £ (x) can be any valid Python expression, and unit is the physical units of the
variable x. In our case we will write:

dv/dt = —(V-El)/tau : volt

to define the variable V with units volt.

To complete the specification of the model, we also define a threshold and reset value and create a group of 40 neurons
with this model.

G = NeuronGroup (N=40, model=’dv/dt = - (V-El)/tau : volt’,
threshold=Vt, reset=Vr)

The statement creates a new object ‘G’ which is an instance of the Brian class NeuronGroup, initialised with the
values in the line above and 40 neurons. In Python, you can call a function or initialise a class using keyword arguments
as well as ordered arguments, so if I defined a function f (x, y) I could callitas £ (1, 2) oras f (y=2,x=1) and
get the same effect. See the Python tutorial for more information on this.

For the moment, we leave the neurons in this group unconnected to each other, each evolves separately from the others.

Simulation

Finally, we run the simulation for 1 second of simulated time. By default, the simulator uses a timestep dt = 0.1 ms.

run (1 * second)

And that’s it! To see some of the output of this network, go to the next part of the tutorial.

Exercise

The units system of Brian is useful for ensuring that everything is consistent, and that you don’t make hard to find
mistakes in your code by using the wrong units. Try changing the units of one of the parameters and see what happens.

Solution

You should see an error message with a Python traceback (telling you which functions were being called when the
error happened), ending in a line something like:

Brian.units.DimensionMismatchError: The differential equations
are not homogeneous!, dimensions were (m"2 kg s"-3 A"-1)
(m~"2 kg s*-4 A"-1)

3.1. Tutorials 11
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Tutorial 1b: Counting spikes

In the previous part of the tutorial we looked at the following:
 Importing the Brian module into Python
 Using quantities with units
* Defining a neuron model by its differential equation
* Creating a group of neurons
* Running a network
In this part, we move on to looking at the output of the network.
The first part of the code is the same.

from brian import =«

tau = 20 * msecond # membrane time constant

vVt = =50 % mvolt # spike threshold

Vr = -60 * mvolt # reset value

El = -60 » mvolt # resting potential (same as the reset)
G = NeuronGroup (N=40, model=’dv/dt = - (V-El)/tau : volt’,

threshold=Vt, reset=Vr)

Counting spikes

Now we would like to have some idea of what this network is doing. In Brian, we use monitors to keep track of
the behaviour of the network during the simulation. The simplest monitor of all is the SpikeMonitor, which just
records the spikes from a given NeuronGroup.

M = SpikeMonitor (G)

Results

Now we run the simulation as before:

run (1l * second)

And finally, we print out how many spikes there were:

print M.nspikes

So what’s going on? Why are there 40 spikes? Well, the answer is that the initial value of the membrane potential for
every neuron is 0 mV, which is above the threshold potential of -50 mV and so there is an initial spike at t=0 and then
it resets to -60 mV and stays there, below the threshold potential. In the next part of this tutorial, we’ll make sure there
are some more spikes to see.

Tutorial 1c: Making some activity

In the previous part of the tutorial we found that each neuron was producing only one spike. In this part, we alter the
model so that some more spikes will be generated. What we’ll do is alter the resting potential E1 so that it is above
threshold, this will ensure that some spikes are generated. The first few lines remain the same:

12 Chapter 3. Getting started
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from brian import =«

tau = 20 * msecond # membrane time constant
vVt = -50 * mvolt # spike threshold
Vr = -60 % mvolt # reset value

But we change the resting potential to -49 mV, just above the spike threshold:

El = -49 x mvolt # resting potential (same as the reset)

And then continue as before:

G = NeuronGroup (N=40, model=’dv/dt = - (V-El)/tau : volt’,
threshold=Vt, reset=Vr)

M = SpikeMonitor (G)
run (1l * second)
print M.nspikes

Running this program gives the output 84 0. That’s because every neuron starts at the same initial value and proceeds
deterministically, so that each neuron fires at exactly the same time, in total 21 times during the 1s of the run.

In the next part, we’ll introduce a random element into the behaviour of the network.

Exercises

1. Try varying the parameters and seeing how the number of spikes generated varies.

2. Solve the differential equation by hand and compute a formula for the number of spikes generated. Compare
this with the program output and thereby partially verify it. (Hint: each neuron starts at above the threshold and
so fires a spike immediately.)

Solution

Solving the differential equation gives:
V =El + (Vr-El) exp (-t/tau)
Setting V=Vt at time t gives:
t = tau log( (Vr-El) / (Vt-El) )

If the simulator runs for time T, and fires a spike immediately at the beginning of the run it will then generate n spikes,
where:

n=[Th]+1

If you have m neurons all doing the same thing, you get nm spikes. This calculation with the parameters above gives:
t=48.0ms n =21 nm = 840

As predicted.

3.1. Tutorials 13
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Tutorial 1d: Introducing randomness

In the previous part of the tutorial, all the neurons start at the same values and proceed deterministically, so they all
spike at exactly the same times. In this part, we introduce some randomness by initialising all the membrane potentials
to uniform random values between the reset and threshold values.

‘We start as before:

from brian import =«

tau = 20 » msecond # membrane time constant

vVt = -50 * mvolt # spike threshold

Vr = -60 % mvolt # reset value

El = -49 x mvolt # resting potential (same as the reset)
G = NeuronGroup (N=40, model='dv/dt = —(V-El)/tau : volt’,

threshold=Vt, reset=Vr)

M

SpikeMonitor (G)

But before we run the simulation, we set the values of the membrane potentials directly. The notation G . V refers to the
array of values for the variable V in group G. In our case, this is an array of length 40. We set its values by generating
an array of random numbers using Brian’s rand function. The syntax is rand (size) generates an array of length
s1ze consisting of uniformly distributed random numbers in the interval O, 1.

G.V = Vr + rand(40) = (Vt - Vr)
And now we run the simulation as before.
run (1 * second)

print M.nspikes

But this time we get a varying number of spikes each time we run it, roughly between 800 and 850 spikes. In the next
part of this tutorial, we introduce a bit more interest into this network by connecting the neurons together.

Tutorial 1e: Connecting neurons

In the previous parts of this tutorial, the neurons are still all unconnected. We add in connections here. The model we
use is that when neuron i is connected to neuron j and neuron i fires a spike, then the membrane potential of neuron j
is instantaneously increased by a value psp. We start as before:

from brian import =«

tau = 20 x msecond # membrane time constant

vVt = -50 * mvolt # spike threshold

Vr = -60 % mvolt # reset value

El = -49 % mvolt # resting potential (same as the reset)

Now we include a new parameter, the PSP size:

psp = 0.5 % mvolt # postsynaptic potential size

And continue as before:

G = NeuronGroup (N=40, model='dvV/dt = —(V-El)/tau : volt’,
threshold=Vt, reset=Vr)

14 Chapter 3. Getting started
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Connections

We now proceed to connect these neurons. Firstly, we declare that there is a connection from neurons in G to neurons
in G. For the moment, this is just something that is necessary to do, the reason for doing it this way will become clear
in the next tutorial.

C = Connection (G, G)

Now the interesting part, we make these neurons be randomly connected with probability 0.1 and weight psp. Each
neuron i in G will be connected to each neuron j in G with probability 0.1. The weight of the connection is the amount
that is added to the membrane potential of the target neuron when the source neuron fires a spike.

C.connect_random (sparseness=0.1, weight=psp)

These two previous lines could be done in one line:

C = Connection (G, G, sparseness=0.1,weight=psp)

Now we continue as before:

M = SpikeMonitor (G)

G.V = Vr + rand(40) * (Vt - Vr)
run (1l *» second)

print M.nspikes

You can see that the number of spikes has jumped from around 800-850 to around 1000-1200. In the next part of the
tutorial, we’ll look at a way to plot the output of the network.

Exercise

Try varying the parameter psp and see what happens. How large can you make the number of spikes output by the
network? Why?

Solution

The logically maximum number of firings is 400,000 = 40 * 1000 / 0.1, the number of neurons in the network * the
time it runs for / the integration step size (you cannot have more than one spike per step).

In fact, the number of firings is bounded above by 200,000. The reason for this is that the network updates in the
following way:

1. Integration step

2. Find neurons above threshold
3. Propagate spikes

4. Reset neurons which spiked

You can see then that if neuron i has spiked at time t, then it will not spike at time t+dt, even if it receives spikes from
another neuron. Those spikes it receives will be added at step 3 at time t, then reset to Vr at step 4 of time t, then
the thresholding function at time t+dt is applied at step 2, before it has received any subsequent inputs. So the most a
neuron can spike is every other time step.

3.1. Tutorials 15
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Tutorial 1f: Recording spikes

In the previous part of the tutorial, we defined a network with not entirely trivial behaviour, and printed the number of
spikes. In this part, we’ll record every spike that the network generates and display a raster plot of them. We start as
before:

from brian import =«

tau = 20 % msecond # membrane time constant

vVt = -50 x mvolt # spike threshold

Vr = -60 % mvolt # reset value

El = -49 % mvolt # resting potential (same as the reset)
psp = 0.5 % mvolt # postsynaptic potential size

G = NeuronGroup (N=40, model='dvV/dt = - (V-El)/tau : volt’,
threshold=Vt, reset=Vr)

C = Connection (G, G)
C.connect_random (sparseness=0.1, weight=psp)

M = SpikeMonitor (G)

G.V = Vr + rand(40) = (Vt - Vr)
run (1 * second)

print M.nspikes

Having run the network, we simply use the raster_plot () function provided by Brian. After creating plots, we
have to use the show () function to display them. This function is from the PyLab module that Brian uses for its built
in plotting routines.

raster_plot ()
show ()

16 Chapter 3. Getting started
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As you can see, despite having introduced some randomness into our network, the output is very regular indeed. In
the next part we introduce one more way to plot the output of a network.

Tutorial 1g: Recording membrane potentials

In the previous part of this tutorial, we plotted a raster plot of the firing times of the network. In this tutorial, we
introduce a way to record the value of the membrane potential for a neuron during the simulation, and plot it. We
continue as before:

from brian import =«

tau 20 % msecond # membrane time constant

vVt = -50 * mvolt # spike threshold

Vr = -60 * mvolt # reset value

El = -49 x mvolt # resting potential (same as the reset)
psp = 0.5 % mvolt # postsynaptic potential size

G = NeuronGroup (N=40, model=’dv/dt = - (V-El)/tau : volt’,
threshold=Vt, reset=Vr)

C = Connection (G, G)
C.connect_random (sparseness=0.1, weight=psp)

This time we won’t record the spikes.
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Recording states

Now we introduce a second type of monitor, the StateMonitor. The first argument is the group to monitor, and
the second is the state variable to monitor. The keyword record can be an integer, list or the value True. If it is an
integer i, the monitor will record the state of the variable for neuron i. If it’s a list of integers, it will record the states
for each neuron in the list. If it’s set to True it will record for all the neurons in the group.

M = StateMonitor (G, ’'V’, record=0)

And then we continue as before:

G.V = Vr + rand(40) * (Vt - Vr)

But this time we run it for a shorter time so we can look at the output in more detail:

run (200 + msecond)

Having run the simulation, we plot the results using the pl ot command from PyLab which has the same syntax as the
Matlab plot * command, i.e. plot (xvals, yvals, ...). The StateMonitor monitors the times at which it
monitored a value in the array M. t imes, and the values in the array M[0]. The notation M[1i] means the array of
values of the monitored state variable for neuron 1.

In the following lines, we scale the times so that they’re measured in ms and the values so that they’re measured in
mV. We also label the plot using PyLab’s x1abel, ylabel and title functions, which again mimic the Matlab
equivalents.

plot (M.times / ms, M[0] / mV)
xlabel (' Time (in ms)’)

ylabel (' Membrane potential (in mV)’)
title ('Membrane potential for neuron 07)
show ()

Membrane potential for neuron 0

-5

Memrane patential (in my)
_\-\_\_\_\_\_\-\-
—

0 30 100 150 200
Time [im ms)
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You can clearly see the leaky integration exponential decay toward the resting potential, as well as the jumps when a
spike was received.

3.1.3 Tutorial 2: Connections

In this tutorial, we will cover in more detail the concept of a Connection in Brian.

Tutorial contents

Tutorial 2a: The concept of a Connection

The network

In this first part, we’ll build a network consisting of three neurons. The first two neurons will be under direct control
and have no equations defining them, they’ll just produce spikes which will feed into the third neuron. This third
neuron has two different state variables, called Va and Vb. The first two neurons will be connected to the third neuron,
but a spike arriving at the third neuron will be treated differently according to whether it came from the first or second
neuron (which you can consider as meaning that the first two neurons have different types of synapses on to the third
neuron).

The program starts as follows.

from brian import =«

tau_a = 1 » ms
tau_b = 10 * ms
vVt = 10 » mV
Vr = 0 » mV

Differential equations

This time, we will have multiple differential equations. We will use the Equations object, although you could
equally pass the multi-line string defining the differential equations directly when initialising the NeuronGroup
object (see the next part of the tutorial for an example of this).

egs = Equations ('’’’
dva/dt = -Va/tau_a : volt
dvb/dt = -Vb/tau_b : volt

rll)

So far, we have defined a model neuron with two state variables, Va and Vb, which both decay exponentially towards
0, but with different time constants tau_a and tau_b. This is just so that you can see the difference between them
more clearly in the plot later on.

SpikeGeneratorGroup

Now we introduce the SpikeGeneratorGroup class. This is a group of neurons without a model, which just
produces spikes at the times that you specify. You create a group like this by writing:

G = SpikeGeneratorGroup (N, spiketimes)

3.1. Tutorials 19



Brian Documentation, Release 1.4.1

where N is the number of neurons in the group, and spiketimes is a list of pairs (i, t) indicating that neuron i
should fire at time t. In fact, spiketimes can be any ‘iterable container’ or ‘generator’, but we don’t cover that
here (see the detailed documentation for SpikeGeneratorGroup).

In our case, we want to create a group with two neurons, the first of which (neuron 0) fires at times 1 ms and 4 ms, and
the second of which (neuron 1) fires at times 2 ms and 3 ms. The list of spiketimes then is:

spiketimes = [(0, 1 = ms), (0, 4 x ms),
(1, 2 » ms), (1, 3 * ms)]

and we create the group as follows:

Gl = SpikeGeneratorGroup (2, spiketimes)

Now we create a second group, with one neuron, according to the model we defined earlier.

G2 = NeuronGroup (N=1, model=eqgs, threshold=Vt, reset=Vr)

Connections

In Brian, a Connection from one NeuronGroup to another is defined by writing:

C = Connection (G, H, state)

Here G is the source group, H is the target group, and st ate is the name of the target state variable. When a neuron i
in G fires, Brian finds all the neurons j in H that i in G is connected to, and adds the amount C [1, j] to the specified
state variable of neuron j in H. Here C[1, j] is the (i,j)th entry of the connection matrix of C (which is initially all
Z€ero0).

To start with, we create two connections from the group of two directly controlled neurons to the group of one neuron
with the differential equations. The first connection has the target state Va and the second has the target state Vb.

Cl Connection (Gl, G2, ’'va’)
C2 = Connection(Gl, G2, ’'Vb’")

So far, this only declares our intention to connect neurons in group G1 to neurons in group G2, because the connection
matrix is initially all zeros. Now, with connection C1 we connect neuron 0 in group G1 to neuron 0 in group G2, with
weight 3 mV. This means that when neuron 0 in group G1 fires, the state variable Va of the neuron in group G2 will
be increased by 6 mV. Then we use connection C2 to connection neuron 1 in group G1 to neuron O in group G2, this
time with weight 3 mV.

C1[0, 0] = 6 * mV
c2[1, 0] = 3 * mv

The net effect of this is that when neuron O of G1 fires, Va for the neuron in G2 will increase 6 mV, and when neuron
1 of G1 fires, Vb for the neuron in G2 will increase 3 mV.
Now we set up monitors to record the activity of the network, run it and plot it.

Ma = StateMonitor (G2, ’'Va’, record=True)
Mb StateMonitor (G2, ’'Vb’, record=True)

run (10 * ms)

plot (Ma.times, Mal[O0])
plot (Mb.times, Mb[0])
show ()
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The two plots show the state variables Va and Vb for the single neuron in group G2. Va is shown in blue, and Vb in
green. According to the differential equations, Va decays much faster than Vb (time constant 1 ms rather than 10 ms),
but we have set it up (through the connection strengths) that an incoming spike from neuron O of G1 causes a large
increase of 6 mV to Va, whereas a spike from neuron 1 of G1 causes a smaller increase of 3 mV to Vb. The value
for Va then jumps at times 1 ms and 4 ms, when we defined neuron 0 of G1 to fire, and decays almost back to rest

in between. The value for Vb jumps at times 2 ms and 3 ms, and because the times are closer together and the time
constant is longer, they add together.

In the next part of this tutorial, we’ll see how to use this system to do something useful.

Exercises

Try playing with the parameters tau_a, tau_b and the connection strengths, C1 [0, 0] and C2[0,1]. Try
changing the list of spike times.

In this part of the tutorial, the states Va and Vb are independent of one another. Try rewriting the differential
equations so that they’re not independent and play around with that.

Write a network with inhibitory and excitatory neurons. Hint: you only need one connection.

Write a network with inhibitory and excitatory neurons whose actions have different time constants (for example,
excitatory neurons have a slower effect than inhibitory ones).

Solutions

3. Simple write C [1, j]=-3+mV to make the connection from neuron i to neuron j inhibitory.

4. See the next part of this tutorial.
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Tutorial 2b: Excitatory and inhibitory currents

In this tutorial, we use multiple connections to solve a real problem, how to implement two types of synapses with
excitatory and inhibitory currents with different time constants.

The scheme

The scheme we implement is the following diffential equations:

taum dV/dt =-V + ge - gi

taue dge/dt = -ge

taui dgi/dt = -gi
An excitatory neuron connects to state ge, and an inhibitory neuron connects to state gi. When an excitatory spike
arrives, ge instantaneously increases, then decays exponentially. Consequently, V will initially but continuously rise
and then fall. Solving these equations, if V(0)=0, ge(0)=g0 corresponding to an excitatory spike arriving at time 0, and
gi(0)=0 then:

gi=0

ge = g0 exp(-t/taue)

V = (exp(-t/taum) - exp(-t/taue)) taue g0 / (taum-taue)

We use a very short time constant for the excitatory currents, a longer one for the inhibitory currents, and an even
longer one for the membrane potential.

from brian import =«

taum = 20 * ms
taue = 1 » ms
taui = 10 * ms

vVt = 10 » mV
Vr = 0 » mV

egs = Equations ('’’’
dv/dt = (-V+ge—-gi)/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = —-gi/taui : volt

rll)

Connections

As before, we’ll have a group of two neurons under direct control, the first of which will be excitatory this time, and
the second will be inhibitory. To demonstrate the effect, we’ll have two excitatory spikes reasonably close together,
followed by an inhibitory spike later on, and then shortly after that two excitatory spikes close together.

spiketimes = [(0, 1 = ms), (0, 10 = ms),
(1, 40 * ms),
(0, 50 * ms), (0, 55 % ms)]

Gl = SpikeGeneratorGroup (2, spiketimes)
G2 = NeuronGroup (N=1, model=eqgs, threshold=Vt, reset=Vr)

Cl = Connection(Gl, G2, ’'ge’)
C2 = Connection(Gl, G2, 'gi’)
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The weights are the same - when we increase ge the effect on V is excitatory and when we increase gi the effect on
V is inhibitory.

Cc1[0, 0] 3 % mV
c2[1, 0] = 3 » mV

We set up monitors and run as normal.

Mv = StateMonitor (G2, ’'V’, record=True)
Mge = StateMonitor (G2, ’'ge’, record=True)
Mgi StateMonitor (G2, ’'gi’, record=True)

run (100 = ms)

This time we do something a little bit different when plotting it. We want a plot with two subplots, the top one will
show V, and the bottom one will show both ge and gi. We use the subplot command from pylab which mimics
the same command from Matlab.

figure ()

subplot (211)

plot (Mv.times, Mv[O0])
subplot (212)

plot (Mge.times, Mge[0])
plot (Mgi.times, Mgi[0])
show ()
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The top figure shows the voltage trace, and the bottom figure shows ge in blue and gi in green. You can see that
although the inhibitory and excitatory weights are the same, the inhibitory current is much more powerful. This is
because the effect of ge or gi on V is related to the integral of the differential equation for those variables, and gi
decays much more slowly than ge. Thus the size of the negative deflection at 40 ms is much bigger than the excitatory
ones, and even the double excitatory spike after the inhibitory one can’t cancel it out.
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In the next part of this tutorial, we set up our first serious network, with 4000 neurons, excitatory and inhibitory.

Exercises

1. Try changing the parameters and spike times to get a feel for how it works.
2. Try an equivalent implementation with the equation taum dV/dt = -V+ge+gi

3. Verify that the differential equation has been solved correctly.

Solutions

Solution for 2:
Simply use the line C2[1, 0] = -3»mV to get the same effect.
Solution for 3:

First, set up the situation we described at the top for which we already know the solution of the differential equations,
by changing the spike times as follows:

spiketimes = [ (0, Oxms) ]

Now we compute what the values ought to be as follows:

t = Mv.times
Vpredicted = (exp(-t/taum) - exp(-t/taue))s*tauex (3»mV) / (taum-taue)

Now we can compute the difference between the predicted and actual values:

Vdiff = abs (Vpredicted - Mv[0])

This should be zero:

print max (Vdiff)

Sure enough, it’s as close as you can expect on a computer. When I run this it gives me the value 1.3 aV, which is 1.3
* 107-18 volts, i.e. effectively zero given the finite precision of the calculations involved.

Tutorial 2c: The CUBA network

In this part of the tutorial, we set up our first serious network that actually does something. It implements the CUBA
network, Benchmark 2 from:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph,
Carnevale, Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermen-
trout, Djurfeldt, Lansner, Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of
Computational Neuroscience

This is a network of 4000 neurons, of which 3200 excitatory, and 800 inhibitory, with exponential synaptic currents.
The neurons are randomly connected with probability 0.02.

from brian import =«

taum = 20 * ms # membrane time constant

taue = 5 % ms # excitatory synaptic time constant
taui = 10 % ms # inhibitory synaptic time constant
vVt = =50 * mvV # spike threshold
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Vr = =60 * mV # reset value
El = 49 %« mV # resting potential
we = (60 = 0.27 / 10) * mV # excitatory synaptic weight
wi = (20 = 4.5 / 10) * mV # inhibitory synaptic weight
egs = Equations ('’’’

dv/dt = (ge-gi-(V-El))/taum : volt

dge/dt = -ge/taue : volt

dgi/dt = -gi/taui : volt

I!l)

So far, this has been pretty similar to the previous part, the only difference is we have a couple more parameters, and
we’ve added a resting potential E1 into the equation for V.

Now we make lots of neurons:

G = NeuronGroup (4000, model=eqgs, threshold=Vt, reset=Vr)

Next, we divide them into subgroups. The subgroup () method of a NeuronGroup returns a new NeuronGroup
that can be used in exactly the same way as its parent group. At the moment, the subgrouping mechanism can only
be used to create contiguous groups of neurons (so you can’t have a subgroup consisting of neurons 0-100 and also
200-300 say). We designate the first 3200 neurons as Ge and the second 800 as G1i, these will be the excitatory and
inhibitory neurons.

Ge = G.subgroup(3200) # Excitatory neurons
Gi = G.subgroup (800) # Inhibitory neurons

Now we define the connections. As in the previous part of the tutorial, ge is the excitatory current and gi is the
inhibitory one. Ce says that an excitatory neuron can synapse onto any neuron in G, be it excitatory or inhibitory.
Similarly for inhibitory neurons. We also randomly connect Ge and Gi to the whole of G with probability 0.02 and
the weights given in the list of parameters at the top.

Ce = Connection(Ge, G, ’'ge’, sparseness=0.02, weight=we)
Ci = Connection(Gi, G, ’'gi’, sparseness=0.02, weight=wi)

Set up some monitors as usual. The line record=0 in the StateMonitor declarations indicates that we only want
to record the activity of neuron 0. This saves time and memory.

M = SpikeMonitor (G)

MV = StateMonitor (G, ’'V’, record=0)
Mge StateMonitor (G, 'ge’, record=0)
Mgi = StateMonitor (G, ’'gi’, record=0)

And in order to start the network off in a somewhat more realistic state, we initialise the membrane potentials uniformly
randomly between the reset and the threshold.

G.V = Vr + (Vt - Vr) * rand(len(G))

Now we run.

run (500 » ms)

And finally we plot the results. Just for fun, we do a rather more complicated plot than we’ve been doing so far, with
three subplots. The upper one is the raster plot of the whole network, and the lower two are the values of V (on the left)
and ge and gi (on the right) for the neuron we recorded from. See the PyLab documentation for an explanation of the
plotting functions, but note that the raster_plot () keyword newfigure=False instructs the (Brian) function
raster_plot () notto create a new figure (so that it can be placed as a subplot of a larger figure).

3.1. Tutorials 25



Brian Documentation, Release 1.4.1

subplot (211)

raster_plot (M, title=’The CUBA network’, newfigure=False)
subplot (223)

plot (MV.times / ms, MV[0] / mV)
xlabel (' Time (ms)’)

ylabel (V (mV)’)

subplot (224)

plot (Mge.times / ms, Mge[0] / mV)
plot (Mgi.times / ms, Mgi[0] / mV)
xlabel (' Time (ms)’)

ylabel ("ge and gi (mV)"’)
legend(('ge’, "gi’), ’'upper right’)
show ()

Thit CUBA network

3.2 Examples
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These examples cover some basic topics in writing Brian scripts in Python. The complete source code for the examples
is available in the examples folder in the extras package.

3.2.1 audition

Example: licklider (audition)

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

Romain Brette
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from brian import =
defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20 * ms # 50 Hz

tau_ear = 1 * ms

sigma_ear = .1

egs_ear = "'’

dx/dt=(sound-x) /tau_ear+sigma_ear= (2./tau_ear) xx.5+x1i : 1

sound=5*sin (2xpixfrequency*t)«*3 : 1 # nonlinear distorsion

#sound=5+* (sin (4xpi*rfrequency*t)+.5xsin (6*xpixfrequencyxt)) : 1 # missing fundamental

frequency=(200+200+t*Hz) «Hz : Hz # increasing pitch

receptors = NeuronGroup (2, model=eqgs_ear, threshold=1, reset=0, refractory=2 *x ms)
traces = StateMonitor (receptors, ’'x’, record=True)

sound = StateMonitor (receptors, ’'sound’, record=0)

# Coincidence detectors

min_freq = 50 % Hz

max_freq = 1000 * Hz

N = 300

tau = 1 * ms

sigma = .1

egs_neurons = "'’
dv/dt=-v/tau+sigma* (2./tau) *x.5xxi : 1
rrr

neurons = NeuronGroup (N, model=egs_neurons, threshold=1, reset=0)

synapses = Connection (receptors, neurons, ’'v’, structure='dense’, max_delay=1.1 » max_delay, delay=T:
synapses.connect_full (receptors, neurons, weight=.5)

synapses.delay[l, :] = 1. / exp(linspace(log(min_freq / Hz), log(max_freq / Hz), N))

spikes = SpikeMonitor (neurons)

run (500 * ms)

raster_plot (spikes)

ylabel (' Frequency’)

yticks ([0, 99, 199, 299], array(l. / synapses.delay.todense()[1l, [0, 99, 199, 299]], dtype=int))
show ()

Example: jeffress (audition)

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place
code using delay lines (each neuron receives input from both ears, with different delays).

Romain Brette

from brian import =

defaultclock.dt = .02 % ms
dt = defaultclock.dt

# Sound
sound = TimedArray (10 * randn(50000)) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300 % metre / second
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interaural_distance = 20 * cm # big head!

max_delay = interaural_distance / sound_speed

print "Maximum interaural delay:", max_delay
angular_speed = 2 * pi % radian / second # 1 turn/second

tau_ear = 1 * ms

sigma_ear = .1

eqgs_ears = "'’

dx/dt=(sound (t-delay)-x) /tau_ear+sigma_ear« (2./tau_ear)*.5+xi : 1
delay=distancexsin(theta) : second

distance : second # distance to the centre of the head in time units

dtheta/dt=angular_speed : radian

rrr

ears = NeuronGroup (2, model=egs_ears, threshold=1l, reset=0, refractory=2.5 % ms)
ears.distance = [-.5 * max_delay, .5 » max_delay]

traces = StateMonitor (ears, ’'x’, record=True)

# Coincidence detectors
N = 300

tau = 1 * ms

sigma = .1

egs_neurons = "'’
dv/dt=-v/tau+sigmax (2./tau) »*.5+xi : 1

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0)

synapses = Connection(ears, neurons, ’'v’, structure='dense’, delay=True, max_delay=1.1 » max_delay)
synapses.connect_full (ears, neurons, weight=.5)

synapses.delay[0, :] = linspace(0 = ms, 1.1 » max_delay, N)

synapses.delay[l, :] = linspace(0 » ms, 1.1 * max_delay, N)[::-1]

spikes = SpikeMonitor (neurons)

run (1000 * ms)

raster_plot (spikes)
show ()

Example: filterbank (audition)

An auditory filterbank implemented with Poisson neurons
The input sound has a missing fundamental (only harmonics 2 and 3)

from brian import =

defaultclock.dt = .01 % ms

N = 1500

tau = 1 x ms # Decay time constant of filters = 2+tau

freq = linspace (100 = Hz, 2000 * Hz, N) # characteristic frequencies
f_stimulus = 500 » Hz # stimulus frequency

gain = 500 = Hz
egs = """’
dv/dt=(-a*xw-v+I)/tau : Hz

dw/dt=(v-w) /tau : Hz # e.g. linearized potassium channel with conductance a
a : 1

I = gain* (sin(4xpi*f_stimulus+*t)+sin(6*pi*xf_stimulusxt)) : Hz

rrr
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neurones = NeuronGroup (N, model=eqs, threshold=PoissonThreshold())

neurones.a = (2 * pi » freg x tau) *x 2
spikes = SpikeMonitor (neurones)
counter = SpikeCounter (neurones)

run (100 = ms)

subplot (121)

CF = array([freq[i] for i, _ in spikes.spikes])
timings = array ([t for _, t in spikes.spikes])
plot (timings / ms, CF, '.7)

xlabel (' Time (ms)’)

ylabel ( Characteristic frequency (Hz)’)

subplot (122)

plot (counter.count / (300 = ms), freq)
xlabel ('Firing rate (Hz)')
show ()

3.2.2 multiprocessing

Example: multiple_runs_with_gui (multiprocessing)

A complicated example of using multiprocessing for multiple runs of a simulation with different parameters, using a
GUI to monitor and control the runs.

This example features:
* An indefinite number of runs, with a set of parameters for each run generated at random for each run.
* A plot of the output of all the runs updated as soon as each run is completed.

* A GUI showing how long each process has been running for and how long until it completes, and with a button
allowing you to terminate the runs.

A simpler example is in examples/multiprocessing/multiple_runs_simple.py.

# We use Tk as the backend for the GUI and matplotlib so as to avoid any
# threading conflicts

import matplotlib

matplotlib.use (' TkAgg’)

from brian import =

import Tkinter, time, multiprocessing, os

from brian.utils.progressreporting import make_text_report
from Queue import Empty as QueueEmpty

class SimulationController (Tkinter.Tk) :
rr7s
GUI, uses Tkinter and features a progress bar for each process, and a callback

function for when the terminate button is clicked.
rr7s

def _ _init__ (self, processes, terminator, width=600):
Tkinter.Tk._ _init_ (self, None)
self.parent = None
self.grid()

button = Tkinter.Button(self, text=’"Terminate simulation’,
command=terminator)
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button.grid(column=0, row=0)
self.pb_width = width
self.progressbars = []
for i in xrange (processes):
can = Tkinter.Canvas (self, width=width, height=30)
can.grid(column=0, row=1l + 1)
can.create_rectangle (0, 0, width, 30, fill=’#aaaaaa’)
r = can.create_rectangle (0, 0, 0, 30, fill=’#ffaaaa’, width=0)
t = can.create_text (width / 2, 15, text=’")
self.progressbars.append((can, r, t))
self.results_text = Tkinter.Label (self, text='Computed 0 results, time taken: 0s’)
self.results_text.grid(column=0, row=processes + 1)
self.title(’Simulation control’)

def update_results(self, elapsed, complete):

rrs

Method to update the total number of results computed and the amount of time taken.

rr s

self.results_text.config(text=’'Computed ’ + str(complete) + ’, time taken: ' + str(int (elapse
self.update ()

def update_process(self, i, elapsed, complete, msqg):

7

Method to update the status of a given process.

rr7s

can, r, t = self.progressbars([i]

can.itemconfigure (t, text='Process ' + str(i) + ’': ’ + make_text_report (elapsed, complete) +
can.coords (r, 0, 0, int(self.pb_width * complete), 30)

self.update ()

def sim_mainloop (pool, results, message_dqueue) :

rrs

Monitors results of a simulation as they arrive

pool is the multiprocessing.Pool that the processes are running 1in,

results is the AsyncResult object returned by Pool.imap_unordered which
returns simulation results asynchronously as and when they are ready,

and message_queue 1s a multiprocessing.Queue used to communicate between

child processes and the server process. In this case, we use this Queue to
send messages about the percent complete and time elapsed for each run.

rr

# We use this to enumerate the processes, mapping their process IDs to an int
# in the range 0:num _processes.

pid_to_id = dict ((pid, i) for i, pid in enumerate([p.pid for p in pool._pool]))

num_processes = len(pid_to_id)
start = time.time ()
stoprunningsim = [False]

# This function terminates all the pool’s child processes, it 1is used as
# the callback function called when the terminate button on the GUI is clicked.
def terminate_sim() :
pool.terminate ()
stoprunningsim[0] = True
controller = SimulationController (num_processes, terminate_sim)
for i in range (num_processes) :
controller.update_process (i, 0, 0, ’'no info yet’)

i=0
while True:
try:
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def plot_result (weight,

# Note that how_many_spikes only takes one argument,

# If there is a new result (the 0.1 means wait 0.1 seconds for a

# result before giving up) then this try clause will execute,

# a TimeoutError will occur and the except
# execute.
weight, numspikes
# 1f we reach here,
# update the GUI
plot_result (weight,
i=1+1
controller.update_results (time.time () -
except multiprocessing.TimeoutError:
# 1f we’re still waiting for a new result,

results.next (0.1)

numspikes)

we have a result to plot,

start,

otherwise
clause afterwards will

so we plot it and

i)

we can process events in

# the message_queue and update the GUI if there are any.

while not
try:

message_queue.empty () :
messages here are of the form:

is the amount of time elapsed,

HH FH W W H

to see where these messages come
pid, elapsed, complete

except QueueEmpty:
break
controller.update ()
if stoprunningsim([O0]:
print ’'Terminated simulation processes’
break
controller.destroy ()

numspikes) :
plot ([weight], [numspikes], '.’,
axis (’tight’)

draw () # this forces matplotlib to redraw

color=(0, 0, 0.5))

(pid,
where pid is the process ID of the child process,

and complete is the
fraction of the run completed. See function how_many_spikes

elapsed, complete)

elapsed

from.

message_queue.get_nowait ()
controller.update_process (pid_to_id[pid],

elapsed, complete, ')

which is a tuple of

# its actual arguments.

# be a tuple...

def how_many_spikes ((excitatory_weight,

reinit_default_clock ()
clear (True)

—_ rrr

egs =
dv/dt = (ge+gi— (v+49+mV))/ (20xms)
dge/dt = —-ge/ (5*ms) volt
dgi/dt = -gi/ (10*ms) volt

rrr

P = NeuronGroup (4000, egs,

volt

threshold= -50 * mv,

The reason for this is that Pool.imap_unordered can only
# pass a single argument to the function its applied to,

but that argument can

message_queue) ) :

reset= -60 * mV)

weight=excitatory_weight)

P.v. = -60 » mV + 10 » mV » rand(len(P))
Pe = P.subgroup (3200)

Pi = P.subgroup(800)

Ce = Connection(Pe, P, ’'ge’)

Ci = Connection(Pi, P, ’"gi’)
Ce.connect_random(Pe, P, 0.02,
Ci.connect_random(Pi, P, 0.02,

M SpikeMonitor (P)

weight= -9 % mV)
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if name == '_ _main

# This reporter function is called every second, and it sends a message to
# the server process updating the status of the current run.
def reporter (elapsed, complete):

message_queue.put ( (os.getpid(), elapsed, complete))

run (4000 = ms, report=reporter, report_period=1 * second)

return (excitatory_weight, M.nspikes)

’ .

numprocesses = None # number of processes to use, set to None to have one per CPU
# We have to use a Queue from the Manager to send messages from client
# processes to the server process
manager = multiprocessing.Manager ()
message_queue = manager.Queue ()
pool = multiprocessing.Pool (processes=numprocesses)
# This generator function repeatedly generates random sets of parameters
# to pass to the how_many_spikes function
def args():
while True:
weight = rand()*3.5 % mV
yield (weight, message_gueue)
# imap_unordered returns an AsyncResult object which returns results as
# and when they are ready, we pass this results object which is returned
# immediately to the sim mainloop function which monitors this, updates the
# GUI and plots the results as they come in.
results = pool.imap_unordered (how_many_spikes, args())
ion() # this puts matplotlib into interactive mode to plot as we go
sim_mainloop (pool, results, message_dgueue)

Example: multiple_runs_simple (multiprocessing)

Example of using Python multiprocessing module to distribute simulations over multiple processors.

The general procedure for using multiprocessing is to define and run a network inside a function, and then use multi-
processing.Pool.map to call the function with multiple parameter values. Note that on Windows, any code that should
only run once should be placed inside an if __name__=="__main__’ block.

from brian import =
import multiprocessing

# This is the function that we want to compute for various different parameters
def how_many_spikes (excitatory_weight) :

# These two lines reset the clock to 0 and clear any remaining data so that
# memory use doesn’t build up over multiple runs.

reinit_default_clock ()

clear (True)

eqs="’
dv/dt = (ge+gi-(v+49+mV))/ (20*ms) : volt
dge/dt = -ge/ (5xms) : volt

dgi/dt = -gi/ (10%ms) : volt

rrr

P = NeuronGroup (4000, egs, threshold= -50 * mV, reset= -60 x mV)
P.v = -60 » mV + 10 # mV » rand(len(P))

Pe = P.subgroup (3200)

Pi = P.subgroup(800)

32
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Ce = Connection(Pe, P, ’'ge’)
Ci Connection(Pi, P, ’"gi’)

Ce.connect_random(Pe, P, 0.02, weight=excitatory_weight)

Ci.connect_random(Pi, P, 0.02, weight= -9 % mV)
M = SpikeMonitor (P)

run (100 * ms)

return M.nspikes

if name == '__main_ ’:

Note that on Windows platforms, all code that is executed rather than

block, otherwise it will be executed by each process that starts. This

#
# just defining functions and classes has to be in the if __name__==’__main__"'
#
#

isn’t a problem on Linux.

pool = multiprocessing.Pool () # uses num _cpu processes by default

weights = linspace (0, 3.5, 100) * mV
args = [w » volt for w in weights]

results = pool.map (how_many_spikes, args) # launches multiple processes

!.I)

plot (weights, results,
show ()

Example: taskfarm (multiprocessing)

Uses the run_tasks () function to run a task on multiple CPUs and save the results to a Dat aManager object.

from brian import =
from brian.tools.datamanager import =
from brian.tools.taskfarm import =

def find_rate(k, report):
eqs:”’
dv/dt = (k-V)/(10*ms) : 1

rrr

G = NeuronGroup (1000, egs, reset=0, threshold=l)

M = SpikeCounter (G)
run (30xsecond, report=report)
return (k, mean (M.count) /30)
if _ name_ =='_ _main_ ’:
N = 20
dataman = DataManager (' taskfarmexample’)
if dataman.itemcount () <N:
M = N-dataman.itemcount ()
run_tasks (dataman, find_rate, rand(M)+19+1)
X, Y = zip(xdataman.values())
plot (X, Y, ".")
xlabel (k")
ylabel ('Firing rate (Hz)')
show ()

3.2.3 plasticity

Example: short_term_plasticity2 (plasticity)

Network (CUBA) with short-term synaptic plasticity for excitatory synapses (Depressing at long timescales, facilitat-

ing at short timescales)

3.2. Examples
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from brian import =
from time import time

— rrr

reset= —-60 * mV)

egs =
dv/dt = (ge+gi-(v+49+mV))/ (20+ms) volt

dge/dt = —-ge/ (5%ms) volt

dgi/dt = —-gi/ (10xms) volt

P = NeuronGroup (4000, model=eqgs, threshold= -50 x mV,

P.v = -60 » mV + rand(4000) * 10 = mV

Pe = P.subgroup (3200)

Pi = P.subgroup(800)

Ce = Connection(Pe, P, 'ge’, weight=1.62 % mV, sparseness=.02)
Ci = Connection(Pi, P, 'gi’, weight= -9 % mV, sparseness=.02)
stp = STP (Ce, taud=200 % ms, tauf=20 * ms, U=.2)

M = SpikeMonitor (P)

rate = PopulationRateMonitor (P)

tl = time ()

run (1l = second)

t2 = time ()

print "Simulation time:", t2 "s'
print M.nspikes, "spikes"

subplot (211)
raster_plot (M)
subplot (212)

plot (rate.times / ms,

show ()

- ti1,

rate.smooth_rate (5 * ms))

Example: STDP1 (plasticity)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

This simulation takes a long time!

from brian import =
from time import time

N = 1000

taum = 10 * ms
tau_pre = 20 * ms
tau_post = tau_pre
Ee = 0 » mV

vt = -54 x mV

vr = —-60 x» mV

El = =74 x mV

taue = 5 * ms

F = 15 x Hz

gmax = .01

dA_pre = .01
dA_post = -dA_pre * tau_pre / tau_post = 1.05

— rr

eqs_neurons
dv/dt=(gex (Ee-vr)+E1l-v) /taum
dge/dt=-ge/taue : 1

rrr

volt # the synaptic

current is linearized
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input = PoissonGroup (N, rates=F)

neurons = NeuronGroup(l, model=egs_neurons, threshold=vt, reset=vr)

synapses = Connection (input, neurons, ’'ge’, weight=rand(len (input), len(neurons)) * gmax)
neurons.v = Vr

#stdp=ExponentialSTDP (synapses, tau_pre,tau_post,dA _pre,dA _post, wmax=gmax)

## Explicit STDP rule

egs_stdp = "'’

dA_pre/dt=-A_pre/tau_pre : 1

dA_post/dt=-A_post/tau_post : 1

dA_post *= gmax

dA_pre *= gmax

stdp = STDP (synapses, egs=edgs_stdp, pre='A_pre+=dA_pre;w+=A_post’,
post="A_post+=dA_post;wt=A_pre’, wmax=gmax)

rate = PopulationRateMonitor (neurons)

start_time = time ()
run (100 * second, report=’'text’)
print "Simulation time:", time() - start_time

subplot (311)
plot (rate.times / second, rate.smooth_rate (100 * ms))
subplot (312)

plot (synapses.W.todense () / gmax, '.’)
subplot (313)

hist (synapses.W.todense () / gmax, 20)
show ()

Example: STDP2 (plasticity)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000), Song and Abbott (2001) and van
Rossum et al (2000).

This simulation takes a long time!

from brian import =
from time import time

N = 1000
taum = 10 * ms
tau_pre = 20 % ms

tau_post = tau_pre
Ee = 0 » mV

vt = =54 x mV
vr = —60 x» mV
El = =74  mV
taue = 5 x ms

gmax = 0.01

F = 15 x Hz

dA_pre = .01

dA_post = —-dA_pre x tau_pre / tau_post x 2.5
egs_neurons = "'’

dv/dt=(gex (Ee-vr)+El-v) /taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1
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input = PoissonGroup (N, rates=F)
neurons = NeuronGroup (l, model=egs_neurons, threshold=vt, reset=vr)

synapses = Connection (input, neurons, ’'ge’, weight=rand(len (input), len(neurons)) * gmax,

structure='dense’)
neurons.v = VvVr

stdp = ExponentialSTDP (synapses, tau_pre, tau_post, dA_pre, dA_post, wmax=gmax,

rate = PopulationRateMonitor (neurons)

start_time = time ()
run (100 % second, report=’'text’)
print "Simulation time:", time() - start_time

subplot (311)
plot (rate.times / second, rate.smooth_rate (100 * ms))
subplot (312)

plot (synapses.W.todense () / gmax, '.’)
subplot (313)

hist (synapses.W.todense () / gmax, 20)
show ()

Example: short_term_plasticity (plasticity)

Example with short term plasticity model Neurons with regular inputs and depressing synapses

from brian import =«

tau_e = 3 * ms
taum = 10 * ms
A_SE = 250 % pA
Rm = 100 * Mohm

N = 10

eqgs = rrr
dx/dt=rate : 1
rate : Hz

rrr

input = NeuronGroup (N, model=eqgs, threshold=1., reset=0)
input.rate = linspace(5 % Hz, 30 = Hz, N)

egs_neuron = "'’
dv/dt=(Rm*i-v) /taum:volt
di/dt=-1i/tau_e:amp

rrr

neuron = NeuronGroup (N, model=eqgs_neuron)

C = Connection (input, neuron, ’"1i7)

C.connect_one_to_one (weight=A_SE)

stp = STP(C, taud=1 % ms, tauf=100 » ms, U=.1) # facilitation
#stp=STP (C, taud=100+ms, tauf=10+ms, U=.6) # depression

trace = StateMonitor (neuron, ’'v’, record=[0, N - 1])

run (1000 * ms)

update="mixed’)
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subplot (211)

plot (trace.times / ms, trace[0] / mV)
title (' Vm’)

subplot (212)

plot (trace.times / ms, trace[N - 1] / mV)
title ('Vvm’)

show ()

3.2.4 hears

Example: sounds (hears)

Example of basic use and manipulation of sounds with Brian hears.

from brian import =
from brian.hears import =«

soundl = tone(lxkHz, lxsecond)
sound?2 = whitenoise (l*second)

sound = soundl-+sound2
sound = sound.ramp ()

# Comment this line out if you don’t have pygame installed
sound.play ()

# The first 20ms of the sound
startsound = sound[:20+ms]

subplot (121)

plot (startsound.times, startsound)
subplot (122)

sound. spectrogram()

show ()

Example: ircam_hrtf (hears)

Example showing the use of HRTFs in Brian hears. Note that you will need to download the TRCAM_LISTEN
database.

from brian import =

from brian.hears import =«

# Load database

hrtfdb = IRCAM_LISTEN (r’F:\HRTF\IRCAM')
hrtfset = hrtfdb.load_subject (1002)

# Select only the horizontal plane
hrtfset = hrtfset.subset (lambda elev: elev==0)
# Set up a filterbank

sound = whitenoise (10+ms)

fb = hrtfset.filterbank (sound)

# Extract the filtered response and plot
img = fb.process().T

img_left = img[:img.shape[0]/2, :]
img_right = img[img.shape[0]/2:, :]
subplot (121)
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imshow (img_left, origin=’lower left’, aspect='auto’,
extent=(0, sound.duration/ms, 0, 360))

xlabel (' Time (ms)’)

ylabel (" Azimuth’)

title (' Left ear’)

subplot (122)

imshow (img_right, origin=’lower left’, aspect=’auto’,
extent=(0, sound.duration/ms, 0, 360))

xlabel (' Time (ms)’)

ylabel (" Azimuth’)

title ('Right ear’)

show ()

Example: butterworth (hears)

Example of the use of the class Butterworth available in the library. In this example, a white noise is filtered
by a bank of butterworth bandpass filters and lowpass filters which are different for every channels. The centre or
cutoff frequency of the filters are linearly taken between 100kHz and 1000kHz and its bandwidth frequency increases
linearly with frequency.

from brian import =
from brian.hears import =«

level = 50xdB # level of the input sound in rms dB SPL
sound = whitenoise (100xms) .ramp ()

sound = sound.atlevel (level)

order = 2 #order of the filters

#### example of a bank of bandpass filter ########H##FH####H

nchannels = 50

center_frequencies = linspace(100«Hz, 1000+«Hz, nchannels)

bw = linspace (50+«Hz, 300+Hz, nchannels) # bandwidth of the filters
#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
fc = vstack ((center_frequencies-bw/2, center_frequencies+bw/2))

filterbank = Butterworth (sound, nchannels, order, fc, ’'bandpass’)
filterbank_mon = filterbank.process|()

figure ()

subplot (211)

imshow (flipud(filterbank_mon.T), aspect="auto’)

### example of a bank of lowpass filter ################
nchannels = 50

cutoff_frequencies = linspace(200«Hz, 1000%Hz, nchannels)
filterbank = Butterworth (sound, nchannels, order, cutoff_frequencies, ’low’)
filterbank_mon = filterbank.process /()

subplot (212)

imshow (flipud(filterbank_mon.T), aspect="auto’)
show ()
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Example: time_varying_filter2 (hears)

This example implements a band pass filter whose center frequency is modulated by a sinusoid function. This modula-
tor is implemented as a FunctionFilterbank. One state variable (here time) must be kept; it is therefore imple-
mented with a class. The bandpass filter coefficients update is an example of how to use a ControlFilterbank.
The bandpass filter is a basic biquadratic filter for which the Q factor and the center frequency must be given. The
input is a white noise.

from brian import =
from brian.hears import =«

samplerate = 20xkHz
SoundDuration = 300+ms
sound = whitenoise (SoundDuration, samplerate) .ramp ()

#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)
nchannels = 1

fc_init = 5000+Hz #initial center frequency of the band pass filter
Q =5 #quality factor of the band pass filter

update_interval = 1 # the filter coefficients are updated every sample

mean_center_freq = 4xkHz #mean frequency around which the CF will oscillate

amplitude = 1500xHz #amplitude of the oscillation
frequency = 10xHz #frequency of the oscillation
#this class is used in a FunctionFilterbank (via its __call ). It outputs the

#center frequency of the band pass filter. Its output is thus later passed as
#input to the controler.
class CenterFrequencyGenerator (object) :
def _ init__ (self):
self.t=0+second

def _ call_ (self, input):
#update of the center frequency
fc = mean_center_fregtamplitudexsin (2+pixfrequency*self.t)
#update of the state variable
self.t = self.t+l./samplerate
return fc

center_frequency = CenterFrequencyGenerator ()
fc_generator = FunctionFilterbank (sound, center_frequency)

#the updater of the controller generates new filter coefficient of the band pass
#filter based on the center frequency it receives from the fc_generator
#(its input)
class CoeffController (object):
def _ init__ (self, target):
self.BW = 2+arcsinh(1./2/Q)*1.44269
self.target=target

def _ _call_(self, input):
fc = input[-1,:] #the control variables are taken as the last of the buffer
w0 = 2xpixfc/array (samplerate)
alpha = sin(w0)*sinh (log(2)/2*self.BW+w0/sin (w0))
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self.target.filt_b[:, 0, 0] = sin(w0Q)/2
self.target.filt_b[:, 1, 0] = 0
self.target.filt_bJ[:, 2, 0] = -sin(w0)/2
self.target.filt_al:, 0, 0] = l+alpha
self.target.filt_afl:, 1, 0] = -2xcos(w0)
self.target.filt_al:, 2, 0] = l-alpha

# In the present example the time varying filter is a LinearFilterbank therefore

#we must initialise the filter coefficients; the one used for the first buffer computation
w0 = 2+pixfc_init/samplerate

BW = 2%arcsinh(1./2/Q)*1.44269

alpha = sin(w0) *sinh (log(2)/2+BW+w0/sin (w0))

filt_b = zeros((nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))
filt_bf[:, 0, 0] = sin(w0)/2
filt_bl:, 1, 0] =0

filt_bf:, 2, 0] = -sin(w0)/2
filt_al[:, 0, 0] = l+alpha
filt_afl:, 1, 0] = —-2xcos(w0)
filt_al:, 2, 0] = l-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank (sound, filt_b, filt_a)
#the updater

updater = CoeffController (bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank (bandpass_filter, fc_generator, bandpass_filter,
updater, update_interval)

time_varying_ filter _mon = control.process()
figure (1)
pxx, fregs, bins, im = specgram(squeeze (time_varying_ filter_mon),

NFFT=256, Fs=samplerate, noverlap=240)
imshow (flipud (pxx), aspect="auto’)

show ()

Example: time_varying_filter1 (hears)

This example implements a band pass filter whose center frequency is modulated by an Ornstein-Uhlenbeck. The
white noise term used for this process is output by a FunctionFilterbank. The bandpass filter coefficients update is an
example of how to use a ControlFilterbank. The bandpass filter is a basic biquadratic filter for which the Q
factor and the center frequency must be given. The input is a white noise.

from brian import =«
from brian.hears import =«

samplerate = 20xkHz
SoundDuration = 300+ms
sound = whitenoise (SoundDuration, samplerate) .ramp ()
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#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)
nchannels = 1

fc_init = 5000«Hz #initial center frequency of the band pass filter
Q =5 #quality factor of the band pass filter
update_interval = 4 # the filter coefficients are updated every 4 samples

#parameters of the Ornstein-Uhlenbeck process
s_ i1 = 1200«Hz

tau_i = 100+ms
mu_i = fc_init/tau_i
sigma_i = sqgrt(2)*s_1i/sqgrt (tau_i)

deltaT = defaultclock.dt

#this function 1is used in a FunctionFilterbank. It outputs a noise term that
#will be later used by the controler to update the center frequency

noise = lambda x: mu_ixdeltaT+sigma_i*randn (1) «sqrt (deltaT)

noise_generator = FunctionFilterbank (sound, noise)

#this class will take as input the output of the noise generator and as target
#the bandpass filter center frequency
class CoeffController (object) :
def _ init__ (self, target):
self.target = target
self.deltaT = 1./samplerate
self.BW = 2+arcsinh(1./2/Q)*1.44269
self.fc = fc_init

def _ call_(self, input):
#the control variables are taken as the last of the buffer

noise_term = input[-1,:]
#update the center frequency by updateing the OU process
self.fc = self.fc-self.fc/tau_ixrself.deltaT+noise_term

w0 = 2+pixself.fc/samplerate
#update the coefficient of the biquadratic filterbank
alpha = sin(w0)*sinh (log(2)/2*self.BW+w0/sin (w0))

)
self.target.filt_b[:, 0, 0] = sin(w0) /2
self.target.filt_b[:, 1, 0] = 0
self.target.filt_b[:, 2, 0] = —-sin(w0) /2
self.target.filt_al:, 0, 0] = l+alpha
self.target.filt_afl:, 1, 0] = -2%cos(w0)
self.target.filt_al:, 2, 0] = l-alpha

# In the present example the time varying filter is a LinearFilterbank therefore

#we must initialise the filter coefficients; the one used for the first buffer computation
w0 = 2+pixfc_init/samplerate

BW = 2xarcsinh(1./2/Q)x1.44269

alpha = sin(w0)*sinh (log(2) /2+BW+w0/sin (w0))

filt_b = zeros((nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))
filt_bf[:, 0, 0] = sin(w0)/2
filt_b[:, 1, 0] =0

filt_bl:, 2, 0] = -sin(w0)/2
filt_al[:, 0, 0] = l+alpha
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filt_afl:, 1, 0] = —2xcos(w0)
filt_al:, 2, 0] = l-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank (sound, filt_b, filt_a)
#the updater

updater = CoeffController (bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank (bandpass_filter, noise_generator, bandpass_filter,
updater, update_interval)

time_varying_filter_mon = control.process()

figure (1)

pxx, fregs, bins, im = specgram(squeeze (time_varying_ filter_mon),
NFFT=256, Fs=samplerate, noverlap=240)

imshow (flipud (pxx), aspect=’auto’)

show ()

Example: dcgc (hears)

Implementation example of the compressive gammachirp auditory filter as described in Irino, T. and Patterson R., “A
compressive gammachirp auditory filter for both physiological and psychophysical data”, JASA 2001.

A class called DCGC implementing this model is available in the library.

Technical implementation details and notation can be found in Irino, T. and Patterson R., “A Dynamic Compressive
Gammachirp Auditory Filterbank”, IEEE Trans Audio Speech Lang Processing.

from brian import =
from brian.hears import =«

simulation_duration = 50+ms

samplerate = 50xkHz

level = 50xdB # level of the input sound in rms dB SPL
sound = whitenoise (simulation_duration, samplerate) .ramp ()
sound = sound.atlevel (level)

nbr_cf = 50 # number of centre frequencies
# center frequencies with a spacing following an ERB scale
cf = erbspace(100xHz, 1000«Hz, nbr_cf)

cl -2.96 #glide slope of the first filterbank

bl 1.81 #factor determining the time constant of the first filterbank
c2 = 2.2 #glide slope of the second filterbank

b2 = 2.17 #factor determining the time constant of the second filterbank

order_ERB = 4

ERBrate = 21.4%x10gl10(4.37+xcf/1000+1)
ERBwidth = 24.7%(4.37xc£/1000 + 1)
ERBspace = mean (diff (ERBrate))

# the filter coefficients are updated every update_interval (here in samples)
update_interval = 1
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#bank of passive gammachirp filters. As the control path uses the same passive
#filterbank than the signal path (but shifted in frequency)

#this filterbank is used by both pathway.

pGc = LogGammachirp (sound, cf, b=bl, c=cl)

fpl = cf + cl+ERBwidth+bl/order_ERB #centre frequency of the signal path
#### Control Path ####

#the first filterbank in the control path consists of gammachirp filters

#value of the shift in ERB frequencies of the control path with respect to the signal path
1ct_ERB = 1.5

n_ch_shift = round(lct_ERB/ERBspace) #value of the shift in channels

#index of the channel of the control path taken from pGc

indchl_control = minimum (maximum(l, arange(l, nbr_cf+1l)+n_ch_shift), nbr_cf).astype(int)-1
fpl_control = fpl[indchl_control]

#the control path bank pass filter uses the channels of pGc indexed by indchl_control
pGc_control = RestructureFilterbank (pGc, indexmapping=indchl_control)

#the second filterbank in the control path consists of fixed asymmetric compensation filters
frat_control = 1.08

fr2_control = frat_control«fpl_control

asym_comp_control = AsymmetricCompensation (pGc_control, fr2_control, b=b2, c=c2)

#definition of the pole of the asymmetric comensation filters
p0 = 2

pl = 1.7818%(1-0.0791%b2)*(1-0.1655+abs (c2))

P2 = 0.5689% (1-0.1620xb2) % (1-0.0857xabs (c2))

p3 = 0.2523%(1-0.0244b2) * (1+0.0574*abs (c2))

pd = 1.0724

#definition of the parameters used in the control path output levels computation
#(see IEEE paper for details)

decay_tcst = .5+ms
order = 1.
lev_weight = .5

level_ref = 50.

level _pwrl = 1.5

level_pwr2 = .5

RMStoSPL = 30.

frat0 = .2330

fratl = .005

exp_deca_val = exp(-1/(decay_tcst+samplerate)~log(2))
level_min = 10xx (-RMStoSPL/20)

#definition of the controller class. What is does it take the outputs of the
#first and second fitlerbanks of the control filter as input, compute an overall
#intensity level for each frequency channel. It then uses those level to update
#the filter coefficient of its target, the asymmetric compensation filterbank of
#the signal path.
class CompensensationFilterUpdater (object) :
def _ _init__ (self, target):

self.target = target

self.levell_prev = -100

self.level2_prev = -100

def _ _call__ (self, *input):
valuel = input[0][-1,:]
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value2 = input[1l][-1,:]

#the current level value is chosen as the max between the current
#output and the previous one decreased by a decay

levell = maximum (maximum(valuel, 0), self.levell_prevxexp_deca_val)
level2 = maximum (maximum(value2, 0), self.level2_prevxexp_deca_val)

self.levell prev levell #the value is stored for the next iteration
self.level2_prev = level2
#the overall intensity is computed between the two filterbank outputs
level_total = lev_weightxlevel_refx (levell/level_ref)xxlevel_ pwrl+\
(1-lev_weight) xlevel_ref* (level2/level_ref) +xlevel_pwr2
#then it is converted in dB
level _dB = 20%10ogl0 (maximum(level_total, level_min))+RMStoSPL
#the frequency factor is calculated
frat = frat0 + fratlxlevel_dB
#the centre frequency of the asymmetric compensation filters are updated
fr2 = fpl«frat
coeffs = asymmetric_compensation_coeffs (samplerate, fr2,
self.target.filt_b, self.target.filt_a, b2, c2,
pO0, pl, p2, p3, p4)
self.target.filt_b, self.target.filt_a = coeffs

#### Signal Path ####
#the signal path consists of the passive gammachirp filterbank pGc previously
#defined followed by a asymmetric compensation filterbank
frl = fplxfratO
varyingfilter_signal_path = AsymmetricCompensation (pGc, frl, b=b2, c=c2)
updater = CompensensationFilterUpdater (varyingfilter_signal_path)
#the controler which takes the two filterbanks of the control path as inputs
#and the varying filter of the signal path as target is instantiated
control = ControlFilterbank (varyingfilter_signal_path,
[pGc_control, asym_comp_control],
varyingfilter_signal_path, updater, update_interval)

#run the simulation

#Remember that the controler are at the end of the chain and the output of the
#whole path comes from them

signal = control.process|()

figure ()
imshow (flipud(signal.T), aspect="auto’)
show ()

Example: artificial_vowels (hears)

This example implements the artificial vowels from Culling, J. F. and Summerfield, Q. (1995a). “Perceptual segrega-
tion of concurrent speech sounds: absence of across-frequency grouping by common interaural delay” J. Acoust. Soc.
Am. 98, 785-797.

from brian import =
from brian.hears import x

duration = 409.6xms
width = 150%Hz/2
samplerate = 10xkHz

set_default_samplerate (samplerate)
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centres = [225«Hz, 625+«Hz, 975%Hz, 1925xHz]
vowels = {
"ee’ : [centres[0], centres[3]]
"ar’ :[centres[1], centres[2]],
[centres[0], centres[2]],
[centres[1], centres[3]]

14

"oo’ :
"er’:

def generate_vowel (vowel) :
vowel = vowels[vowel]
X = whitenoise (duration)
y = fft(asarray(x).flatten())
f = fftfreg(len(x), 1/samplerate)
I = zeros(len(f), dtype=bool)
for cf in vowel:
I = I|((abs(f)<cf+width) & (abs(f)>cf-width))
I =-1I
y[I] =0
x = ifft (y)
return Sound (x.real)

vl = generate_vowel ("ee’) .ramp ()
v2 = generate_vowel ("ar’) .ramp ()
v3 = generate_vowel (00’ ) .ramp ()
v4 = generate_vowel ("er’) .ramp()

for s in [vl1l, v2, v3, v4]:
s.play (normalise=True, sleep=True)

sl = Sound((vl, v2))
#sl.play (normalise=True, sleep=True)

s2 = Sound((v3, v4))
#s2.play (normalise=True, sleep=True)

vl.save ("mono_sound.wav’)
sl.save (’stereo_sound.wav’)

subplot (211)
plot(vl.times, v1)
subplot (212)
vl1.spectrogram/()
show ()

Example: lIRfilterbank (hears)

Example of the use of the class ITRFilterbank available in the library. In this example, a white noise is filtered by
a bank of chebyshev bandpass filters and lowpass filters which are different for every channels. The centre frequencies
of the filters are linearly taken between 100kHz and 1000kHz and its bandwidth or cutoff frequency increases linearly
with frequency.

from brian import =
from brian.hears import =«

sound = whitenoise (100*ms) .ramp ()
sound.level = 50+dB
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### example of a bank of bandpass filter #########H#H###H###

nchannels = 50

center_frequencies = linspace(200«Hz, 1000%Hz, nchannels) #center frequencies
bw = linspace(50+«Hz, 300xHz, nchannels) #bandwidth of the filters

# The maximum loss in the passband in dB. Can be a scalar or an array of length
# nchannels

gpass = 1.xdB

# The minimum attenuation in the stopband in dB. Can be a scalar or an array

# of length nchannels

gstop = 10.xdB

#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
passband = vstack ((center_frequencies-bw/2, center_frequencies+tbw/2))

#arrays of shape (2 x nchannels) defining the stopband frequencies (Hz)
stopband = vstack ((center_frequencies-1.1lxbw, center_frequencies+l.1lxbw))

filterbank = IIRFilterbank (sound, nchannels, passband, stopband, gpass, gstop,
"bandstop’, ’chebyl’)
filterbank_mon = filterbank.process|()

figure ()
subplot (211)
imshow (flipud(filterbank_mon.T), aspect="auto’)

#### example of a bank of lowpass filter ###########F#FH#F

nchannels = 50

cutoff_frequencies = linspace(100«Hz, 1000%«Hz, nchannels)

#bandwidth of the transition region between the en of the pass band and the
#begin of the stop band

width_transition = linspace(50«Hz, 300%Hz, nchannels)

# The maximum loss in the passband in dB. Can be a scalar or an array of length
# nchannels

gpass = 1xdB

# The minimum attenuation in the stopband in dB. Can be a scalar or an array of
# length nchannels

gstop = 10xdB

passband = cutoff_frequencies-width_transition/2

stopband = cutoff_frequencies+width_transition/2

filterbank = IIRFilterbank (sound, nchannels, passband, stopband, gpass, gstop,
"low’,’"chebyl’)
filterbank_mon=filterbank.process()

subplot (212)

imshow (flipud(filterbank_mon.T), aspect="auto’)
show ()

Example: gammatone (hears)

Example of the use of the class Gammat one available in the library. It implements a fitlerbank of IIR gammatone
filters as described in Slaney, M., 1993, “An Efficient Implementation of the Patterson-Holdsworth Auditory Filter
Bank”. Apple Computer Technical Report #35. In this example, a white noise is filtered by a gammatone filterbank

and the resulting cochleogram is plotted.

from brian import =
from brian.hears import =«
from matplotlib import pyplot
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sound = whitenoise (100xms) .ramp ()
sound.level = 50+dB

nbr_center_frequencies = 50

bl = 1.019 #factor determining the time constant of the filters
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100+«Hz, 1000xHz, nbr_center_frequencies)
gammatone = Gammatone (sound, center_frequencies, b=bl)

gt_mon = gammatone.process ()

figure ()
imshow (gt_mon.T, aspect=’auto’, origin=’lower left’,
extent=(0, sound.duration/ms,
center_frequencies[0], center_frequencies[-1]))
pyplot.yscale (' log”)
title (' Cochleogram’)
ylabel (' Frequency (Hz)')
xlabel (' Time (ms)’)

show ()

Example: cochleagram (hears)

Example of basic filtering of a sound with Brian hears. This example implements a cochleagram based on a gammatone

filterbank followed by halfwave rectification, cube root compression and 10 Hz low pass filtering.

from brian import =
from brian.hears import x

soundl = tone(lxkHz, .l*second)
sound2 = whitenoise(.l*second)

sound = soundl+sound2
sound = sound.ramp ()

cf = erbspace(20xHz, 20+kHz, 3000)
gammatone = Gammatone (sound, cf)

cochlea = FunctionFilterbank (gammatone, lambda x: clip(x, 0, Inf)x+(1.0/3.0))

lowpass = LowPass (cochlea, 10xHz)

output = lowpass.process()

imshow (output.T, origin=’lower left’, aspect=’auto’, vmin=0)
show ()

Example: simple_anf (hears)

Example of a simple auditory nerve fibre model with Brian hears.

from brian import =«
from brian.hears import =«

soundl = tone(lxkHz, .l*second)
sound?2 = whitenoise (.lxsecond)
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sound = soundl+sound2
sound = sound.ramp ()

cf = erbspace(20xHz, 20xkHz, 3000)
cochlea = Gammatone (sound, cf)

# Half-wave rectification and compression [x]"(1/3)
ihc = FunctionFilterbank (cochlea, lambda x: 3xclip(x, 0, Inf)*+(1.0/3.0))

# Leaky integrate—-and-fire model with noise and refractoriness
eqgs =
dv/dt = (I-v)/(l*ms)+0.2%xi*x (2/(l*ms))**.5 : 1
I :1

rrr

rrr

anf = FilterbankGroup(ihc, "I’, egs, reset=0, threshold=1, refractory=5*ms)

M = SpikeMonitor (anf)
run (sound.duration)
raster_plot (M)

show ()

Example: sound_localisation_model (hears)

Example demonstrating the use of many features of Brian hears, including HRTFs, restructuring filters and integration
with Brian. Implements a simplified version of the “ideal” sound localisation model from Goodman and Brette (2010).

The sound is played at a particular spatial location (indicated on the final plot by a red +). Each location has a
corresponding assembly of neurons, whose summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate of the location by the model.

Reference:
Goodman DFM, Brette R (2010). Spike-timing-based computation in sound localization. PLoS Comput. Biol. 6(11).

from brian import =
from brian.hears import =«

# Download the IRCAM database, and replace this filename with the location
# you downloaded it to

hrtfdb = IRCAM_LISTEN (r’F:\HRTF\IRCAM’)

subject = 1002

hrtfset = hrtfdb.load_subject (subject)

# This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices

# Choose a random location for the sound to come from

index = randint (hrtfset.num_indices)

# A sound to test the model with

sound = Sound.whitenoise (500+ms)

# This 1is the specific HRTF for the chosen location

hrtf = hrtfset.hrtf[index]

# We apply the chosen HRTF to the sound, the output has 2 channels
hrtf_fb = hrtf.filterbank (sound)

# We swap these channels (equivalent to swapping the channels in the
# subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank (hrtf_fb, indexmapping=[1, 0])
# Now we apply all of the possible pairs of HRTFs in the set to these
# swapped channels, which means repeating them num_indices times first
hrtfset_fb = hrtfset.filterbank (Repeat (swapped_channels, num_indices))
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# Now we apply cochlear filtering (logically, this comes before the HRTF
# filtering, but since convolution is commutative it is more efficient to
# do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150%Hz, 5+kHz, 40
cf = erbspace(cfmin, cfmax, cfN)
# We repeat each of the HRTFSet filterbank channels cfN times, so that
# for each location we will apply each possible cochlear frequency
gfb = Gammatone (Repeat (hrtfset_fb, cfN),
tile(cf, hrtfset_fb.nchannels))

# Half wave rectification and compression
cochlea = FunctionFilterbank (gfb, lambda x:15xclip(x, 0, Inf)*+(1.0/3.0))
# Leaky integrate and fire neuron model
egqs = "'’
dv/dt = (I-V)/(l*ms)+0.1%xi/(0.5+ms)*%x.5 : 1
I:1
rrr
G = FilterbankGroup (cochlea, ’"I’, eqgs, reset=0, threshold=1l, refractory=5+ms)
# The coincidence detector (cd) neurons
cd = NeuronGroup (num_indices*cfN, eqgs, reset=0, threshold=1, clock=G.clock)
# Each CD neuron receives precisely two inputs, one from the left ear and
# one from the right, for each location and each cochlear frequency
C = Connection (G, cd, 'V’)
for i in xrange (num_indices*cfN) :

cri, i] = 0.5 # from right ear

Cli+num_indices*cfN, i] = 0.5 # from left ear
# We want to just count the number of CD spikes
counter = SpikeCounter (cd)
# Run the simulation, giving a report on how long it will take as we run
run (sound.duration, report=’'stderr’)
# We take the array of counts, and reshape them into a 2D array which we sum
# across frequencies to get the spike count of each location-specific assembly

count = counter.count

count.shape = (num_indices, c£fN)

count = sum(count, axis=1)

count = array (count, dtype=float)/amax (count)

# Our guess of the location is the index of the strongest firing assembly
index_guess = argmax (count)

# Now we plot the output, using the coordinates of the HRTFSet
coords = hrtfset.coordinates

azim, elev = coords[’azim’], coords[’elev’]

scatter (azim, elev, 100xcount)

plot ([azim[index]], [elev[index]], '+r’, ms=15, mew=2)

plot ([azim[index_guess]], [elev[index_guess]], ’'xg’, ms=15, mew=2)
xlabel ("Azimuth (deg)’)

ylabel ("Elevation (deg)’)

x1lim (-5, 350)

ylim (=50, 95)

show ()

Example: linear_gammachirp (hears)

Example of the use of the class LinearGammachirp available in the library. It implements a filterbank of FIR
gammatone filters with linear frequency sweeps as described in Wagner et al. 2009, “Auditory responses in the barn
owl’s nucleus laminaris to clicks: impulse response and signal analysis of neurophonic potential”, J. Neurophysiol.
In this example, a white noise is filtered by a gammachirp filterbank and the resulting cochleogram is plotted. The
different impulse responses are also plotted.
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from brian import =
from brian.hears import =«

sound whitenoise (100+ms) .ramp ()
sound.level = 50+dB

nbr_center_frequencies = 10 #number of frequency channels in the filterbank
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100«Hz, 1000xHz, nbr_center_frequencies)

c = 0.0 #glide slope
time_constant = linspace (3, 0.3, nbr_center_frequencies) *ms

gamma_chirp = LinearGammachirp (sound, center_frequencies, time_constant, c)
gamma_chirp_mon = gamma_chirp.process ()

figure ()

imshow (gamma_chirp_mon.T, aspect=’auto’)

figure ()

plot (gamma_chirp.impulse_response.T)
show ()

Example: online_computation (hears)

Example of online computation using process (). Plots the RMS value of each channel output by a gammatone
filterbank.

from brian import =
from brian.hears import =«

soundl tone (1+kHz, .lxsecond)
sound?2 = whitenoise (.lxsecond)

sound = soundl+sound?2
sound sound.ramp ()

sound.level = 60+dB

cf = erbspace(20xHz, 20+kHz, 3000)
fb Gammatone (sound, cf)

def sum_of_squares (input, running):
return running+sum(input**2, axis=0)

rms = sqrt (fb.process (sum_of_squares) /sound.nsamples)
sound_rms = sqgrt (mean (soundxx*2))

axhline (sound_rms, ls="--")
plot (cf, rms)
xlabel (' Frequency (Hz)")
ylabel ("RMS’)

show ()
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Example: log_gammachirp (hears)

Example of the use of the class LogGammachirp available in the library. It implements a filterbank of IIR gam-
machirp filters as Unoki et al. 2001, “Improvement of an IIR asymmetric compensation gammachirp filter”. In this
example, a white noise is filtered by a linear gammachirp filterbank and the resulting cochleogram is plotted. The
different impulse responses are also plotted.

from brian import =«
from brian.hears import =«

sound = whitenoise (100+*ms) .ramp ()
sound.level = 50+dB

nbr_center_frequencies = 50 #number of frequency channels in the filterbank
cl = -2.96 #glide slope
bl = 1.81 #factor determining the time constant of the filters

#center frequencies with a spacing following an ERB scale
cf = erbspace (100+xHz, 1000+Hz, nbr_center_frequencies)

gamma_chirp = LogGammachirp (sound, cf, c=cl, b=bl)
gamma_chirp_mon = gamma_chirp.process()

figure ()
imshow (flipud(gamma_chirp_mon.T), aspect=’auto’)
show ()

Example: drnl (hears)

Implementation example of the dual resonance nonlinear (DRNL) filter with parameters fitted for human as described
in Lopez-Paveda, E. and Meddis, R., A human nonlinear cochlear filterbank, JASA 2001.

A class called DRNL implementing this model is available in the library.

The entire pathway consists of the sum of a linear and a nonlinear pathway.

The linear path consists of a bank of bandpass filters (second order gammatone), a low pass function, and a
gain/attenuation factor, g, in a cascade.

The nonlinear path is a cascade consisting of a bank of gammatone filters, a compression function, a second bank of
gammatone filters, and a low pass function, in that order.

The parameters are given in the form 10+ (pO+mlogl0 (cf) ).

from brian import =«
from brian.hears import =«

simulation_duration = 50+ms
samplerate = 50xkHz
level = 50+dB # level of the input sound in rms dB SPL

sound = whitenoise(simulation_duration, samplerate) .ramp ()
sound.level = level
nbr_cf = 50 #number of centre frequencies

#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100+xHz,1000+xHz, nbr_cf)
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#conversion to stape velocity (which are the units needed by the following centres)
sound = soundx0.00014

#### Linear Pathway ####

#bandpass filter (second order gammatone filter)

center_frequencies_linear = 10%%(-0.067+1.016+x10ogl0 (center_frequencies))
bandwidth_linear = 10x%(0.037+0.785%x10gl0 (center_frequencies))
order_linear = 3

gammatone = ApproximateGammatone (sound, center_frequencies_linear,
bandwidth_linear, order=order_linear)

#linear gain

g = 10%%(4.2-0.48+10ogl0 (center_frequencies))
func_gain = lambda x:g*x

gain = FunctionFilterbank (gammatone, func_gain)

#low pass filter (cascade of 4 second order lowpass butterworth filters)

cutoff_frequencies_linear = center_frequencies_linear
order_lowpass_linear = 2
lp_1 = LowPass (gain, cutoff_frequencies_linear)

lowpass_linear = Cascade(gain, 1lp_1, 4)
#### Nonlinear Pathway ####

#bandpass filter (third order gammatone filters)

center_frequencies_nonlinear = center_frequencies
bandwidth_nonlinear = 10%%(-0.031+0.774%x10gl0 (center_frequencies))
order_nonlinear = 3

bandpass_nonlinearl = ApproximateGammatone (sound, center_frequencies_nonlinear,
bandwidth_nonlinear,
order=order_nonlinear)

#compression (linear at low level, compress at high level)

a = 10%x%(1.402+0.819%10gl0 (center_frequencies)) #linear gain

b = 10%%(1.619-0.818%10gl0 (center_frequencies))

v = .2 #compression exponent

func_compression = lambda x: sign(x)s*minimum(axabs (x), bxabs (x)*=*v)
compression = FunctionFilterbank (bandpass_nonlinearl, func_compression)

#bandpass filter (third order gammatone filters)

bandpass_nonlinear2 = ApproximateGammatone (compression,
center_frequencies_nonlinear,
bandwidth_nonlinear,
order=order_nonlinear)

#low pass filter

cutoff_frequencies_nonlinear = center_frequencies_nonlinear
order_lowpass_nonlinear = 2
lp_nl = LowPass (bandpass_nonlinear2, cutoff_frequencies_nonlinear)

lowpass_nonlinear = Cascade (bandpass_nonlinear2, lp_nl, 3)

#adding the two pathways

dnrl_filter = lowpass_linear+lowpass_nonlinear
dnrl = dnrl_filter.process|()
figure ()
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imshow (flipud(dnrl.T), aspect=’auto’)
show ()

Example: cochlear_models (hears)

Example of the use of the cochlear models (DRNL, DCGC and TanCarney) available in the library.

from brian import =
from brian.hears import =«

simulation_duration = 50xms

set_default_samplerate (50+kHz)

sound = whitenoise (simulation_duration)

sound = sound.atlevel (50+«dB) # level in rms dB SPL

cf = erbspace (100+xHz, 1000«Hz, 50) # centre frequencies
interval = 16 #update interval of the time varying filters
## DNRL

#param_drnl = {}

#param _drnl[’1p_nl_cutoff m’] = 1.1

#drnl_filter=DRNL (sound, cf, type=’human’, param=param_drnl)

#out = drnl_filter.process()
## DCGC

#param_dcgc = {}

#param _dcgc[’cl’] = -2.96

#dcgc_filter = DCGC (sound, cf, interval, param=param_dcgc)
#out = dcgc_filter.process ()

## Tan and Carney 2003
tan_filter = TanCarney (sound, cf, interval)

out = tan_filter.process/()

figure ()

imshow (flipud(out.T), aspect=’auto’)
show ()

Example: approximate_gammatone (hears)

Example of the use of the class ApproximateGammatone available in the library. It implements a filterbank
of approximate gammatone filters as described in Hohmann, V., 2002, “Frequency analysis and synthesis using a
Gammatone filterbank”, Acta Acustica United with Acustica. In this example, a white noise is filtered by a gammatone
filterbank and the resulting cochleogram is plotted.

from brian import =
from brian.hears import =«

level=50xdB # level of the input sound in rms dB SPL
sound = whitenoise (100*ms) .ramp () # generation of a white noise
sound = sound.atlevel (level) # set the sound to a certain dB level

nbr_center_frequencies = 50 # number of frequency channels in the filterbank
# center frequencies with a spacing following an ERB scale

center_frequencies = erbspace(100+«Hz, 1000+Hz, nbr_center_frequencies)

# bandwidth of the filters (different in each channel)

bw = 10x%x(0.037+0.785%x10g10 (center_frequencies))
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gammatone = ApproximateGammatone (sound, center_frequencies, bw, order=3)
gt_mon = gammatone.process ()

figure ()

imshow (flipud(gt_mon.T), aspect="auto’)

show ()

3.2.5 hears/tan_carney_2003

Example: tan_carney_Fig11 (hears/tan_carney 2003)

Response area and phase response of a model fiber with CF=2200Hz in the Tan&Carney model. Reproduces Fig. 11
from:

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import itertools

import matplotlib.pyplot as plt
import numpy as np

from brian import =
# set_global_preferences (useweave=True)
from brian.hears import =«

duration = 50xms
samplerate = 50xkHz
set_default_samplerate (samplerate)

CF = 2200

fregs = np.arange(250.0, 3501., 50.)

levels = [10, 30, 50, 70, 90]

cf_level = list(itertools.product (fregs, levels))

tones = Sound([Sound.sequence ([tone (freq » Hz, duration) .atlevel (levelxdB) .ramp (when=’"both’,

duration=2.5+ms,
inplace=False)])
for freq, level in cf_level])

ihc = TanCarney (MiddleEar (tones), [CF] x len(cf_level), update_interval=2)
syn = ZhangSynapse (ihc, CF)

s_mon = StateMonitor (syn, ’'s’, record=True, clock=syn.clock)

net = Network (syn, s_mon)

net.run (duration)

reshaped = s_mon.values.reshape((len(fregs), len(levels), -1))

# calculate the phase with respect to the stimulus

pi = np.pi

min_freq, max_freq = 1100, 2900

freq _subset = freqgs|[ (fregs>=min_freq) & (fregs<=max_freq)]
reshaped_subset = reshaped[ (fregs>=min_freq) & (fregs<=max_freq), :, :]
phases = np.zeros((reshaped_subset.shape[0], len(levels)))

for f_idx, freqg in enumerate (freqg_subset) :
period = 1.0 / freq
for 1_idx in xrange (len(levels)):
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phase_angles = np.arange (reshaped_subset.shape[2]) /samplerate % period / period = 2x*pi
temp_phases = (np.exp(lj * phase_angles) =

reshaped_subset [f_idx, 1_idx, :1)
phases[f_idx, 1_idx] = np.angle (np.sum(temp_phases))

plt.subplot (2, 1, 1)

rate = reshaped.mean (axis=2)

plt.plot (fregs, rate)

plt.ylabel (' Spikes/sec’)

plt.legend ([’ ¢.0f dB’ % level for level in levels], 0)
plt.x1lim (0, 4000)

plt.ylim (0, 250)

plt.subplot (2, 1, 2)

relative_phases = (phases.T - phases[:, -1]).T
relative_phases|[relative_phases > pi] = relative_phases[relative_phases > pi] - 2xpi
relative_phases[relative_phases < -pi] = relative_phases|[relative_phases < -pi] + 2xpi

plt.plot (freq_subset, relative_phases / pi)

plt.ylabel ("Phase Re:90dB (pi radians)")
plt.xlabel (' Frequency (Hz)'’)

plt.legend ([’ ¢.0f dB’” % level for level in levels], 0)
plt.x1im (0, 4000)

plt.ylim(-0.5, 0.75)

plt.show ()

Example: tan_carney_Fig7 (hears/tan_carney_2003)

CF-dependence of compressive nonlinearity in the Tan&Carney model. Reproduces Fig. 7 from:

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import itertools

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interpld

from brian import =«

#set_global_preferences (useweave=True)

from brian.hears import =«

from brian.hears.filtering.tan_carney import TanCarneySignal, MiddleEar

samplerate = 50xkHz
set_default_samplerate (samplerate)
duration = 50xms

def gen_tone (freq, level):
rrs
Little helper function to generate a pure tone at frequency ‘freq' with
the given ‘level'. The tone has a duration of 50ms and is ramped with
two ramps of 2.5ms.
freq = float (freq) * Hz
level = float (level) * dB
return tone(freq, duration) .ramp (when="both’,
duration=2.5*ms,
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inplace=False) .atlevel (level)

freqgqs = [500, 1100, 2000, 4000]
levels = np.arange(-10, 100.1, 5)
cf_level = list(itertools.product (freqgs, levels))

# steady-state
start = 1l0xms*samplerate
end = 45xms+samplerate

# For Figure 7 we have manually adjusts the gain for different CFs —-- otherwise
# the RMS values wouldn’t be identical for low CFs. Therefore, try to estimate
# suitable gain values first using the lowest CF as a reference

ref_tone = gen_tone (fregs[0], levels[0])

F_out_reference = TanCarneySignal (MiddleEar (ref_tone, gain=1l), fregs[0],
update_interval=1) .process () .flatten()

ref_rms = np.sqgrt (np.mean((F_out_reference[start:end] -

np.mean (F_out_reference[start:end])) *xx2))

gains = np.linspace(0.1, 1, 50) # for higher CFs we need lower gains

cf_gains = list (itertools.product (fregs[l:], gains))

tones = Sound([gen_tone (freq, levels[0]) for freq, _ in cf_gains])

F_out_test = TanCarneySignal (MiddleEar (tones, gain=np.array([g for _, g in cf_gains])),
[cf for cf,_ in cf_gains], update_interval=1l) .process|()

reshaped_Fout = F_out_test.T.reshape((len(fregs[l:]), len(gains), -1))

rms = np.sqrt (np.mean((reshaped_Fout[:, :, start:end].T -
np.mean (reshaped_Fout[:, :, start:end], axis=2).T).Tx*=*2,
axis=2))

# get the best gain for each CF using simple linear interpolation

gain_dict = {fregs[0]: 1.} # reference gain
for idx, freq in enumerate (freqgs[l:]):
gain_dict[freq] = interpld(rms[idx, :], gains) (ref_rms)

# now do the real test: tones at different levels for different CFs

tones = Sound([gen_tone (freq, level) for freq, level in cf_level])
F_out = TanCarneySignal (MiddleEar (tones,
gain=np.array([gain_dict[cf] for cf, _ in cf_levell])),
[cf for cf, _ in cf_level],

update_interval=1) .process ()

reshaped_Fout = F_out.T.reshape((len(fregs), len(levels), -1))

rms = np.sqrt (np.mean((reshaped_Fout[:, :, start:end].T -
np.mean (reshaped_Fout[:, :, start:end], axis=2).T).Txx2,
axis=2))

# This should more or less reproduce Fig. 7
plt.plot (levels, rms.T)

plt.legend ([’ ¢.0f Hz’ % cf for cf in fregs], 0)
plt.xlim(-20, 100)

plt.ylim(le-6, 1)

plt.yscale (' log’)

plt.xlabel (' input signal SPL (dB)’)
plt.ylabel (' rms of AC component of Fout’)
plt.show ()
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Example: tan_carney_simple_test (hears/tan_carney_2003)

Fig. 1 and 3 (spking output without spiking/refractory period) should reproduce the output of the AN3_test_tone.m
and AN3_test_click.m scripts, available in the code accompanying the paper Tan & Carney (2003). This matlab code
is available from http://www.urmc.rochester.edu/labs/Carney-Lab/publications/auditory-models.cfm

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import numpy as np
import matplotlib.pyplot as plt

from brian.stdunits import kHz, Hz, ms

from brian.network import Network

from brian.monitor import StateMonitor, SpikeMonitor
from brian.globalprefs import set_global_preferences

#set_global_ preferences (useweave=True)

from brian.hears import (Sound, get_samplerate, set_default_samplerate, tone,
click, silence, dB, TanCarney, MiddleEar, ZhangSynapse)

from brian.clock import reinit_default_clock

set_default_samplerate (50+kHz)
sample_length = 1 / get_samplerate (None)
cf = 1000 % Hz

print ’'Testing click response’

duration = 25xms

levels = [40, 60, 80, 100, 120]

# a click of two samples

tones = Sound([Sound.sequence ([click (sample_lengthx2, peak=levelxdB),

silence (duration=duration - sample_length)])

for level in levels])

ihc = TanCarney (MiddleEar (tones), [cf] * len(levels), update_interval=1)

syn = ZhangSynapse (ihc, cf)

s_mon = StateMonitor(syn, ’'s’, record=True, clock=syn.clock)
R_mon = StateMonitor(syn, ’'R’, record=True, clock=syn.clock)
spike_mon = SpikeMonitor (syn)

net = Network (syn, s_mon, R_mon, spike_mon)

net.run (duration * 1.5)

for idx, level in enumerate (levels):
plt.figure (1)
plt.subplot (len(levels), 1, idx + 1)
plt.plot (s_mon.times / ms, s_mon[idx])
plt.x1lim (0, 25)
plt.xlabel (' Time (msec)’)
plt.ylabel (' Sp/sec’)

plt.text (15, np.nanmax(s_mon[idx]) /2., ’'Peak SPL=%s SPL’ % str(levelxdB));
ymin, ymax = plt.ylim()
if idx ==

plt.title(’Click responses’)

plt.figure (2)

plt.subplot (len(levels), 1, idx + 1)

plt.plot (R_mon.times / ms, R_mon[idx])

plt.xlabel (' Time (msec)’)

plt.xlabel (' Time (msec)’)

plt.text (15, np.nanmax (s_mon[idx]) /2., ’'Peak SPL=%s SPL’ % str(level*dB));
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plt.ylim(ymin, ymax)
if idx ==
plt.title(’Click responses (with spikes and refractoriness)’)
plt.plot (spike_mon.spiketimes[idx] / ms,
np.ones (len(spike_mon.spiketimes[idx])) * np.nanmax (R_mon[idx]),

Trx’)
print ’'Testing tone response’
reinit_default_clock ()
duration = 60*ms
levels = [0, 20, 40, 60, 80]
tones = Sound([Sound.sequence ([tone(cf, duration).atlevel (levelxdB) .ramp (when="both’,
duration=10+ms,
inplace=False),
silence (duration=duration/2) 1)
for level in levels])
ihc = TanCarney (MiddleEar (tones), [cf] * len(levels), update_interval=1)
syn = ZhangSynapse (ihc, cf)
s_mon = StateMonitor(syn, ’'s’, record=True, clock=syn.clock)
R_mon = StateMonitor (syn, ’'R’, record=True, clock=syn.clock)
spike_mon = SpikeMonitor (syn)
net = Network (syn, s_mon, R_mon, spike_mon)
net.run (duration * 1.5)
for idx, level in enumerate (levels):
plt.figure (3)
plt.subplot (len(levels), 1, idx + 1)
plt.plot(s_mon.times / ms, s_mon[idx])
plt.x1im (0, 120)
plt.xlabel (' Time (msec)’)
plt.ylabel (' Sp/sec’)
plt.text (1.25 % duration/ms, np.nanmax(s_mon[idx]) /2., ’%s SPL’ % str(levelxdB));
ymin, ymax = plt.ylim()
if idx == 0:
plt.title('CF=%.0f Hz - Response to Tone at CF’ % cf)

plt.figure (4)

plt.subplot (len(levels), 1, idx + 1)

plt.plot (R_mon.times / ms, R_mon[idx])

plt.xlabel (' Time (msec)’)

plt.xlabel (' Time (msec)’)

plt.text (1.25 % duration/ms, np.nanmax (R_mon[idx]) /2., '%s SPL’ % str(level*dB));
plt.ylim(ymin, ymax)

X

if idx ==
plt.title('CF=%.0f Hz - Response to Tone at CF (with spikes and refractoriness)’ % cf)
plt.plot (spike_mon.spiketimes[idx] / ms,
np.ones (len(spike_mon.spiketimes[idx])) * np.nanmax (R_mon[idx]), ’"rx’")
plt.show()

3.2.6 electrophysiology
Example: compensation_ex2_spikes (electrophysiology)

Example of spike detection method. Requires binary files “current.npy” and “rawtrace.npy”.

Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012
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import os

from brian import =«

import numpy as np

from brian.library.electrophysiology import x

working_dir = os.path.dirname(___file_ )

# load data
dt = 0.1lxms

current = np.load(os.path.join(working_dir, "current.npy")) # 10000-1ong vector, 1s duration
rawtrace = np.load(os.path.join(working dir, "trace.npy")) # 10000-long vector, 1ls duration
t = linspace(0., 1., len(current))

# find spikes and compute score
spikes, scores = find_spikes (rawtrace, dt=dt, check_gquality=True)

# plot trace and spikes

plot (t, rawtrace, "k’)

plot (t[spikes], rawtrace[spikes], "or’)
show ()

Example: bridge (electrophysiology)

Bridge experiment (current-clamp)

from brian import =
from brian.library.electrophysiology import =x

defaultclock.dt = .01 % ms
#log_level_debug ()

taum = 20 * ms

gl = 20 * nS

Cm = taum * gl

Re = 50 *» Mohm

Ce = 0.5 » ms / Re
N = 10

egs = Equations(’’’

dvm/dt=(-glxvm+i_inj)/Cm : volt

#Rbridge:ohm

CC:farad

I:amp

)

egs += electrode (.6 * Re, Ce)

#egs+=current_clamp (vm="v_el’,i_inj="1i_cmd’,i_cmd=’I’,Re=.4+Re, Ce=Ce,

# bridge=’Rbridge’)

egs += current_clamp(vm='v_el’, i_inj="i_cmd’, i_cmd='1I’, Re=.4 % Re, Ce=Ce,
bridge=Re, capa_comp='CC")

setup = NeuronGroup (N, model=eqgs)

setup.I = 0 % nA

setup.v = 0 * mV

#setup.Rbridge=1inspace (0+Mohm, 60+Mohm, N)

setup.CC = linspace(0 * Ce, Ce, N)

recording = StateMonitor (setup, ’'v_rec’, record=True)
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run (50 * ms)
setup.I = .5 % nA
run (200 * ms)
setup.I = 0 % nA
run (150 = ms)
for i in range (N):
plot (recording.times / ms + 1 * 400, recording[i] / mV, 'k’)
show ()

Example: SEVC (electrophysiology)

Voltage-clamp experiment (SEVC)

from brian import =
from brian.library.electrophysiology import x

defaultclock.dt = .01 * ms

taum = 20 * ms # membrane time constant
gl = 1. / (50 x= Mohm) # leak conductance

Cm = taum » gl # membrane capacitance

Re = 50 % Mohm # electrode resistance

Ce = 0.1 * ms / Re # electrode capacitance

egs = Equations(’’’

dvm/dt=(-glxvm+i_inj)/Cm : volt

I:amp

")

egs += current_clamp(i_cmd=’"1", Re=Re, Ce=Ce)

setup = NeuronGroup (l, model=eqs)

ampli = SEVC (setup, 'v_rec’, 'I’, 1 % kHz, gain=250 % nS, gain2=50 % nS / ms)
recording = StateMonitor (ampli, ’record’, record=True)

soma = StateMonitor (setup, ’'vm’, record=True)

ampli.command = 20 * mV
run (200 = ms)

figure ()

plot (recording.times / ms, recording[0] / nA, ’"k’)
figure ()

plot (soma.times / ms, soma[0] / mV, ’'b’)

show ()

Example: threshold_analysis (electrophysiology)

Analysis of spike threshold.
Loads a current clamp voltage trace, compensates (remove electrode voltage) and analyses the spikes.

from brian import =
from brian.library.electrophysiology import x
import numpy

dt=.1l+ms

Vraw = numpy.load("trace.npy") # Raw current clamp trace

I = numpy.load("current.npy")

V, _ = Lp_compensate (I, Vraw, dt) # Electrode compensation
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# Peaks

spike_criterion=find_spike_criterion (V)

print "Spike detected when V exceeds", float (spike_criterion/mv),"mv"
peaks=spike_peaks (V,vc=spike_criterion) # vc is optional

# Onsets (= spike threshold)
onsets=spike_onsets (V,criterion=3+dt,vc=spike_criterion) # Criterion: dV/dt>3 V/s

# Spike-triggered average of V
STA=spike_shape (V, onsets=onsets, before=100, after=100)

print "Spike duration:",float (spike_duration (V,onsets=onsets)dt/ms), "ms"
print "Reset potential:",float (reset_potential (V,peaks=peaks)/mV), "mvV"

# Spike threshold statistics
slope=slope_threshold(V,onsets=onsets, T=int (5+ms/dt))

# Subthreshold trace
subthreshold=-spike_mask (V)

t=arange (len (V) ) xdt

subplot (221)

plot (t/ms,V/mV, " k’)

plot (t [peaks]/ms,V[peaks]/mV,".b")

plot (t[onsets]/ms,V[onsets]/mV,".r")

subplot (222)

plot (((arange (len (STA))-100) »dt) /ms, STA/mV, " k')
subplot (223)

plot (t [subthreshold] /ms,V[subthreshold]/mv, k")
subplot (224)

plot (slope/ms,V[onsets]/mv,’ .")

show ()

Example: AEC (electrophysiology)

AEC experiment (current-clamp)

from brian import =
from brian.library.electrophysiology import x
from time import time

myclock = Clock(dt=.1 * ms)
clock_rec = Clock(dt=.1 % ms)

#log_level_debug ()

taum = 20 * ms

gl = 20 % nS

Cm taum * gl

Re = 50 % Mohm

Ce = 0.1 * ms / Re

egs = Equations(’’’
dvm/dt=(-glxvm+i_inj)/Cm : volt
I:amp

I!/)

eqgs += electrode (.6 * Re, Ce)
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egs += current_clamp(vm='v_el’, i_inj="i_cmd’, i_cmd='1’, Re=.4 % Re, Ce=Ce)
setup = NeuronGroup(l, model=eqgs, clock=myclock)

board = AEC (setup, 'v_rec’, ’'I’, clock_rec)

recording = StateMonitor (board, ’record’, record=True, clock=myclock)

soma = StateMonitor (setup, ’'vm’, record=True, clock=myclock)

run (50 * ms)

board.command = .5 * nA

run (200 * ms)

board.command = 0 % nA

run (150 = ms)
board.start_injection ()

tl = time ()

run (1l = second)

t2 = time ()

print ’'Duration:’, t2 - tl, ’'s’
board.stop_injection ()

run (100 * ms)

board.estimate ()

print 'Re=’, sum(board.Ke) * ohm
board.switch_on ()

run (50 + ms)

board.command = .5 * nA

run (200 * ms)

board.command = 0 % nA

run (150 = ms)

board.switch_off ()

figure ()

plot (recording.times / ms, recording[0] / mV, ’'b’)
plot (soma.times / ms, soma[0] / mV, ’'r’)
figure ()

plot (board.Ke)

show ()

Example: compensation_ex1 (electrophysiology)

Example of L”p electrode compensation method. Requires binary files “current.npy” and “rawtrace.npy”.
Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012

import os

from brian import =«

import numpy as np

from brian.library.electrophysiology import =«

working_dir = os.path.dirname(__file_ )

# load data
dt = 0.1lxms

current = np.load(os.path.join(working_dir, "current.npy")) # 10000-1ong vector, 1ls duration
rawtrace = np.load(os.path.join(working dir, "trace.npy")) # 10000-1ong vector, 1s duration
t = linspace(0., 1., len(current))

# launch compensation
r = Lp_compensate (current, rawtrace, dt, p=1.0, full=True)
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# print best parameters
print "Best parameters: R, tau, Vr, Re, taue:"
print r["params"]

# plot traces
subplot (211)
plot (t, current, ’"k’)

subplot (212)

plot (t, rawtrace, ’"k’) # raw trace

plot(t, r["Vfull"], "b’") # full model trace (neuron and electrode)
plot (t, r["Vcompensated"], ’'g’) # compensated trace

show ()

Example: DCC (electrophysiology)

An example of single-electrode current clamp recording with discontinuous current clamp (using the electrophysiology
library).

from brian import =«
from brian.library.electrophysiology import =x

defaultclock.dt = 0.01 * ms

taum = 20 * ms # membrane time constant
gl = 1. / (50 %= Mohm) # leak conductance

Cm = taum = gl # membrane capacitance

Re = 50 *» Mohm # electrode resistance

Ce = 0.1 » ms / Re # electrode capacitance
egs = Equations(’’’

dvm/dt=(-glxvm+i_inj)/Cm : volt

Rbridge:ohm # bridge resistance

I:amp # command current

]

egs += current_clamp(i_cmd="1", Re=Re, Ce=Ce)
setup = NeuronGroup (l, model=eqs)

ampli = DCC(setup, 'v_rec’, 'I’', 1 % kHz)

soma = StateMonitor (setup, ’'vm’, record=True)

recording = StateMonitor (setup, ’'v_rec’, record=True)
DCCrecording = StateMonitor (ampli, ’record’, record=True)

# No compensation

run (50 * ms)
ampli.command = .5 * nA
run (100 = ms)
ampli.command = 0 * nA
run (50 * ms)

ampli.set_frequency (2 * kHz)
ampli.command = .5 * nA

run (100 = ms)

ampli.command = 0 * nA

run (50 * ms)

plot (recording.times / ms, recording[0] / mV, ’'b’)
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plot (DCCrecording.times / ms, DCCrecording[0] / mV, "k’)
plot (soma.times / ms, somal[0] / mV, ’'r’)
show ()

Example: compensation_ex3_quality (electrophysiology)

Example of quality check method. Requires binary files “current.npy” and “rawtrace.npy’.
Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012

import os

from brian import =

import numpy as np

from brian.library.electrophysiology import =x

working_dir = os.path.dirname(___file_ )

# load data
dt = 0.l*ms

current = np.load(os.path.join(working dir, "current.npy")) # 10000-1long vector, 1s duration
rawtrace = np.load(os.path. join(working_ dir, "trace.npy")) # 10000-1ong vector, 1ls duration
compensatedtrace = np.load(os.path.join(working_dir, "compensatedtrace.npy")) # obtained with examp
t = linspace(0., 1., len(current))

# get trace quality of both raw and compensated traces

r = get_trace_quality(rawtrace, current, full=True)

rcomp = get_trace_quality (compensatedtrace, current, full=True)

spikes = r["spikes"]

print "Quality coefficient for raw: $%.3f and for compensated trace: %.3f" % \
(r["correlation"], rcomp["correlation"])

# plot trace and spikes
plot (t, rawtrace, ’'k’)

plot (t, compensatedtrace, ’'g’)

plot (t [spikes], rawtrace[spikes], ’'ok’)

plot (t[spikes], compensatedtrace[spikes], 'og’)
show ()

Example: voltageclamp (electrophysiology)

Voltage-clamp experiment

from brian import =
from brian.library.electrophysiology import =

defaultclock.dt = .01 % ms

taum = 20 * ms

gl = 20 » nS

Cm = taum * gl

Re = 50 % Mohm

Ce = 0.2 » ms / Re

N = 1
Rs = .9 % Re
tauc = Rs » Ce # critical tau_ u
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egs = Equations(’’’

dvm/dt=(-glxvm+i_inj)/Cm : volt

)

eqgs += electrode (.2 * Re, Ce)

egs += voltage_clamp(vm='v_el’, v_cmd=20 * mV, i_inj="1i_cmd’, i_rec="1ic’,
Re=.8 * Re, Rs=.9 % Re, tau_u=.2 % ms)

setup = NeuronGroup (N, model=eqgs)

setup.v = 0 * mV

recording = StateMonitor (setup, ’ic’, record=True)

soma = StateMonitor (setup, ’'vm’, record=True)

run (200 = ms)

figure ()

plot (recording.times / ms, recording[0] / nA, ’'k’)
figure ()

plot (soma.times / ms, somal[0] / mV, ’'b’)

show ()

3.2.7 twister

Example: PeterDiehl (twister)

Peter Diehl’s entry for the 2012 Brian twister.

from brian import =

rrr

egs =

dv/dt = ((=60.*mV-v)+(I_synE+I_synI+I_Db)/(10.%nS))/ (20+ms) : volt
I_synE = 3.xnSxgex( 0.xmV-v) : o amp
I_synI = 30.*nSxgix (-80.xmV-v) : amp
I Db :amp
dge/dt = —-ge/( 5.xms) 1
dgi/dt = -gi/ (10.xms) 1

rrr
P = NeuronGroup (10000, egs, threshold=-50.xmV, refractory=5.xms, reset=-60.xmV)

Pe = P.subgroup(8000)
Pi = P.subgroup(2000)

Ce = Connection (Pe, P, "ge’, weight=1., sparseness=0.02)
Cie = Connection(Pi, Pe, ’'gi’, weight=1., sparseness=0.02)
Cii = Connection(Pi, Pi, ’'gi’, weight=1., sparseness=0.02)
eqgs_stdp = "7’

dpre/dt = -pre/ (20.*ms) 1.0

dpost/dt = -post/ (20.+*ms) 1.0

rrrs

nu = 0.1 # learning rate

alpha = 0.12 # controls the firing rate

stdp = STDP (Cie, egs=eqgs_stdp, pre='pre+= 1l.; w+= nux (post-alpha)’,
post="post+= 1.; wt+= nuxpre’, wmin=0., wmax= 10.)

M = PopulationRateMonitor (Pe, bin = 1.)

P.I_b = 200.*pA #set the input current

run (10+second)

P.I_b = 600.*pA #increase the input and see how the rate adapts

run (10+second)

plot (M.times[0:-1]/second, M.rate[0:-1])

show ()
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Example: FriedemannZenke (twister)

Friedemann Zenke’s winning entry for the 2012 Brian twister.

#HEAAFRAFFRARFHAFFRAFHHAFFAAFRAAFEAAFRAFFHA

Inhibitory synaptic plasticity in a recurrent network model
(F. Zenke, 2011)

Adapted from:

Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner.
"Inhibitory Plasticity Balances Excitation and Inhibition in Sensory
Pathways and Memory Networks.’ Science (November 10, 2011).

S oH O R W W R R W R H

FHAFAFHAFAFHAFAFEAFAFEAHAFEAHAFHAHAFHAHAFHA
from brian import =
(AR izzadadadasatdddasadaasasdadasdadaddadaid

# Defining network model parameters
# HEAFHAHAFHAHAFAAEAFAAEAFAFEAAAFEAFAFHAHAFHA

NE = 8000 # Number of excitatory cells

NI = NE/4 # Number of inhibitory cells

w = 1.%nS # Basic weight unit

tau_ampa = 5.0*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0xms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections

eta = le-2 # Learning rate
tau_stdp = 20*ms # STDP time constant
simtime = 10xsecond # Simulation time

# HAHAAAAAAFARAAAAAARA A AR A AR AAA
# Neuron model
# HAFAAAAFAFAAAAAAFAFAAAAARFARAAAAFAAAAAAAFAAA

gl = 10.0*nsiemens # Leak conductance

el = -60xmV # Resting potential

er = -80xmV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold

memc = 200.0xpfarad # Membrane capacitance
bgcurrent = 200+pA # External current

egs_neurons="""

dv/dt=(-glx (v—-el) - (g_ampa*w*v+g_gabax* (v-er) »w) +bgcurrent) /memc : volt
dg_ampa/dt = —-g_ampa/tau_ampa : 1
dg_gaba/dt = -g_gaba/tau_gaba : 1

rrr

# #AEAAEAAAAAARAEAAAARAAAAA AR R AR R RAAFAAA
# Initialize neuron group

# HAFFEAAFRARFRAAFRAAF AR FRAAFRAAF A AR SRS

neurons=NeuronGroup (NE+NI, model=egs_neurons, threshold=vt, reset=el, refractory=5+ms)
Pe=neurons. subgroup (NE)
Pi=neurons.subgroup (NI)
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[ARizadazasadsaddddasaaasataasasdaaadaadadd
# Connecting the network
# #AEAAAAAAFAAA A AAARAAA AR R A AFAAA A AFAFA

con_e = Connection (Pe,neurons,’g_ampa’,weight=0.3, sparseness=epsilon)
con_ie = Connection(Pi,Pe,’g _gaba’,weight=1e-10, sparseness=epsilon)
con_ii = Connection(Pi,Pi,’g_gaba’,weight=3, sparseness=epsilon)

# #EAFHAFAAAARAA A FAA A EAF A EAF A A FA A A HAAHA
# Setting up monitors
# HEAFEAEAFAARAA AR A AR AR A AR AR A4

sm = SpikeMonitor (Pe)

# #RAEFAAAAAFARAEAAFARAAARA AR R A AFARA A AR
# Run without plasticity
# #A#AAAAAAAAAAAAAAARA A RAARA R A AR A AR

run (1 +«second)

# FEAFEAAAFEAHAFAAHAFAAEAFAFEAAAFEAFAF A HAFHA
# Inhibitory Plasticity
# #EAFEAEAFAAEAF A EAA A EAAAF A AR A A HAF AR RS

alpha = 3+xHz+tau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

egs_stdp_inhib = 77’
dA_pre/dt=-A_pre/tau_stdp : 1
dA_post/dt=-A_post/tau_stdp : 1

rrr

stdp_ie = STDP (con_ie, egs=eqgs_stdp_inhib, pre='A_pre+=1.; wt+=(A_post-alpha)~*eta;’,
post="A_post+=1.; wt+=A_prexeta;’, wmax=gmax)

# ##AFHAFAAAARAA A RAA A EAF AR AR A A F A A HAAHA
# Run with plasticity
# HEAFEAEAFHAEAA AR A AR F AR H AR H A AR A4

run (simtime-1+xsecond, report="text’)

# ##AFHAFAAAARAA A RAA A EAA A EAF AR F A HAAHA
# Make plots
# HEAFEAFAAHARAA A RAA A EAA AR H A F A H A

subplot (211)

raster_plot (sm,ms=1.)

title ("Before")

xlabel ("")

x1im (0.8%1e3,1x1e3)

subplot (212)

raster_plot (sm,ms=1.)

title ("After™)

x1lim((simtime-0.2+second) *1e3,simtimex1e3)
show ()
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Example: PierreYger (twister)

Pierre Yger’s winning entry for the 2012 Brian twister.

from brian import =
import numpy, os, pylab

mwn

An implementation of a simple topographical network, like those used in Mehring 2005 or Yger 2011.
Cells are aranged randomly on a 2D plane and connected according to a gaussian profile

P(r) = exp(-d*+2/(2+sigma++2)), with delays depending linearly on the distances.

Note that the exact number of synapses per neuron 1is not fixed here.

To avoid any border conditions, the plane is considered to be toroidal.
Script will generate an Synchronous Irregular (SI) slow regime with propagating
waves that will spread in various directions, wandering over the network.

In addition, an external layer of Poisson sources will stimulates some cells on the network, with

a wiring scheme such that the word BRIAN will pop up. External rates can be turned off to observed t.
spontaneous activity of the 2D layer. One can observe that despite the inputs is constant, the netwo
is not always responding to it.

The script will display, while running, the spikes and Vm of the excitatory cells.

Varying sigma will show the various activity structures from a random network (s_lat > 1), to a very
locally connected one (s_lat < 0.1)

mmn

### We are setting the global timestep of the simulation
Clock (0.1 * ms)

### Cell parameters ###

tau_m = 20. * ms # Membrane time constant

c_m = 0.2 « nF # Capacitance

tau_exc = 3. % ms # Synaptic time constant (excitatory)
tau_inh = 7. x ms # Synaptic time constant (inhibitory)
tau_ref = 5. x ms # Refractory period

El = -80 « mV # Leak potential

Ee = 0. * mV # Reversal potential (excitation)

Ei = -70.% mV # Reversal potential (inhibition)

vt = =50  mV # Spike Threhold

Vr = -60 » mV # Spike Reset

### Equation for a Conductance-based IAF ####
egs = Equations(’’’

dv/dt = (El-v)/tau_m + (gex* (Ee-v)+gi* (Ei-v))/c_m : volt

dge/dt = -gex (l./tau_exc) : uS

dgi/dt = —gi*(1./tau_inh) : uS

)

n_cells = 12500 # Total number of cells

n_exc = int (0.8 » n_cells) # 4:1 ratio for exc/inh

size = 1. # Size of the network

simtime = 1000 % ms # Simulation time

sim_step =1 * ms # Display snapshots every sim _step ms
epsilon = 0.02 # Probability density

s_lat = 0.2 # Spread of the lateral connections
g_exc = 4 * ns # Excitatory conductance
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g_inh = 64. * nS # Inhibitory conductance
g_ext = 200 * nS # External drive

velocity = 0.3 * mm/ms # velocity

ext_rate = 100 % Hz # Rate of the external source
max_distance = size *» mm/numpy.sqrt(2) # Since this is a torus
max_delay = max_distance/velocity # Needed for the connectors

### Generate the images with the letters B, R, I, A, N

### To do that, we create a png image and read it as a matrix
pylab.figure ()

pylab.text (0.125, 0.4, "B R I A N", size=80)
pylab.setp(gca(), xticks=[], yticks=[])

pylab.savefig ("BRIAN.png")

brian_letters = imread("BRIAN.png")

os.remove ("BRIAN.png")

brian_letters = numpy.flipud(mean (brian_letters,2)).T
pylab.close ()

### We create the cells and generate random positons in [0, size]x[0, size]

all_cells = NeuronGroup (n_cells, model=eqgs, threshold=Vt, reset=Vr, refractory=tau_ref)
all_cells.position sizexnumpy.random.rand (n_cells, 2)

exc_cells = all_cells[0:n_exc]

inh_cells = all_cells[n_exc:n_cells]

### We initialize v values slightly above Vt, to have initial spikes
all_cells.v = E1 + 1.lxnumpy.random.rand(n_cells) = (Vt - EI1)

### Now we create the source that will write the word BRIAN
sources PoissonGroup (1, ext_rate)
sources.position = array ([[0.5, 0.511)

### Function to get the distance between one position and an array of positions
### This is needed to used the vectorized form of the connections in the brian.Connection objects
### Note that the plane is wrapped, to avoid any border effects.
def get_distance(x, vy):
dl = abs(x —vy)
min_d = numpy.minimum(dl, size - dl)
return numpy.sqgrt (numpy.sum (min_dx*2, 1))

### Function returning the probabilities of connections as a functions of distances
def probas (i, Jj, x, Vy):

distance = get_distance(x[1i], vI[3])

return epsilon * numpy.exp (-distancex*2/(2+s_lat+«*2))

### Function returning linear delays as function of distances
def delays (i, j, x, y):

distance = get_distance(x[i], yI[3]])

return 0.lsms + (distance » mm )/ velocity

### Function assessing if a cell is located in a particular letter of the word BRIAN
### Return 0 if not, and 1 if yes.
def is_in_brian(i, j, x, vy):

a, b = brian_letters.shape

tmp_x, tmp_y = (y[jl[:, O]=*a).astype(int), (v[jll[:, 1]+b).astype(int)

return 1 - brian_letters[tmp_x, tmp_V]

print "Building network with wrapped 2D gaussian profiles..."
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Ce = Connection(exc_cells, all _cells, ’"ge’, weight=g_exc, max_delay=max_delay,
sparseness=lambda i, j : probas(i, j, exc_cells.position, all_cells.position)

’
delay =lambda i, j : delays(i, Jj, exc_cells.position, all_cells.position))
Ci = Connection(inh_cells, all_cells, ’gi’, weight=g_inh, max_delay=max_delay,
sparseness=lambda i, j : probas(i, j, inh_cells.position, all_cells.position),
delay =lambda i, j : delays(i, Jj, inh_cells.position, all_cells.position))
Cext = Connection (sources, all _cells, ’'ge’, weight=g_ext, max_delay=max_delay,
sparseness=lambda i, j : is_in_brian(i, j, sources.position, all_cells.position))
print "--> mean probability from excitatory synapses:", Ce.W.getnnz()/float (n_excsn_cells) » 100, "%
print "--> mean probability from inhibitory synapses:", Ci.W.getnnz()/float ((n_cells - n_exc)x*n_cell:

print "Setting the recorders..."

V_exc = RecentStateMonitor (exc_cells, ’'v’, record=True)

s_exc = SpikeCounter (exc_cells)

ion() # To enter the interactive mode

print "Initializing the plots..."

figl = pylab.subplot (211)

im = figl.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1], c=[0]*n_exc)

im.set_clim (0, 1)

figl.set_ylabel ("spikes™")

pylab.colorbar (im)

fig2 = pylab.subplot (212)

im = fig2.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1], c=[0]*n_exc)
im.set_clim(E1l, Vt)

fig2.set_ylabel ("v"

pylab.colorbar (im)

manager = pylab.get_current_fig_manager ()

print "Running network ..."
for time in xrange (int ((simtime/sim_step) /ms)) :
run (sim_step)
figl.cla()
figl.set_title("t = %g s" %((sim_step * time) /ms))
idx = s_exc.count > 0
if numpy.sum(idx) > O:

im = figl.scatter(all_cells.position[:n_exc, 0][idx], all_cells.position[:n_exc, 1][idx], c=
s_exc.count = numpy.zeros (n_exc) ## We reset the spike counter
figl.set_x1im (0, size)
figl.set_ylim(0, size)
figl.set_ylabel ("spikes")
im.set_clim (0, 1)
setp(figl, xticks=[], yticks=[])

fig2.cla()

im = fig2.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1], c=v_exc.values|[—.
fig2.set_x1im (0, size)

fig2.set_ylim (0, size)

fig2.set_ylabel ("v")

im.set_clim(El, Vt)

setp(fig2, xticks=[], yticks=[1])

manager.canvas.draw ()
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manager.canvas.flush_events ()
ioff () # To leave the interactive mode

Example: anonymous (twister)

Anonymous entry for the 2012 Brian twister.

My contribution to the brian twister!

I meant to give it more thought, but I forgot about the deadline!
rrs 7

from brian import =

from brian.hears import =«

import pygame

_mixer_status = [-1,-1]
class SoundMonitor (SpikeMonitor) :

mmon

Listen to you networks!

Plays pure tones whenever a neuron spikes, frequency 1is set according to the neuron number.

mmn

def _ init__ (self, source, record=False, delay=0,
frange = (100.xHz, 5000.xHz),
duration = 50+*ms,
samplerate = 44100xHz) :
super (SoundMonitor, self)._ _init__ (source, record = record, delay = delay)
self.samplerate = samplerate
self.nsamples = np.rint (duration * samplerate)

P linspace (0, 1, len(source)) .reshape((l, len(source)))
p = np.tile(p, (self.nsamples, 1))
fregs = frange[0O] = p + (1-p) = frange[l]

del p

times = linspace (0O*ms, duration, self.nsamples) .reshape((self.nsamples, 1))
times = np.tile(times, (1, len(source)))

self.sounds = np.sin(2 x np.pi * fregs * times)

self. _init_mixer ()

def propagate(self, spikes):
if len(spikes):

data = np.sum(self.sounds([:,spikes], axis = 1)
x = array((2 =+ 15 - 1) % clip(data/amax(data), -1, 1), dtype=intl6)
x.shape = x.size

# Make sure pygame receives an array in C-order
x = pygame.sndarray.make_sound(np.ascontiguousarray (x))
x.play()

def _init_mixer (self):
global _mixer_status
if _mixer_status==[-1,-1] or _mixer_status[0]!=1 or _mixer_status != self.samplerate:
pygame.mixer.quit ()
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pygame.mixer.init (int (self.samplerate), -16, 1)
_mixer_status=[1,self.samplerate]

def test_cubal():
# The CUBA example with sound!
taum = 20 % ms

taue = 5 * ms

taui = 10 % ms

vVt = =50 * mV

Vr = -60 * mV

El = -49 » mV

egs = Equations ('’’’

dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = -ge/taue : volt

dgi/dt = —-gi/taui : volt

)

P = NeuronGroup (4000, model=eqs, threshold=Vt, reset=Vr, refractory=5 » ms)
P.v = Vr

P.ge = 0 » mV

P.gi = 0 » mV

Pe = P.subgroup (3200)
Pi = P.subgroup (800)

we = (60 = 0.27 / 10) * mV # excitatory synaptic weight (voltage)
wi = (=20 = 4.5 / 10) » mV # inhibitory synaptic weight
Ce = Connection(Pe, P, ’'ge’, weight=we, sparseness=0.5)
Ci = Connection(Pi, P, ’'gi’, weight=wi, sparseness=0.5)

P.v = Vr + rand(len(P)) = (Vt - Vr)

# Record the number of spikes
M = SoundMonitor (P)
run (10 * second)

def test_synfire():
from brian import =«
# Neuron model parameters

Vr = =70 » mV
vVt = -55 x mV
taum = 10 * ms

taupsp = 0.325 * ms
weight = 4.86 » mV
# Neuron model

eqgs = Equations ('’’’
dv/dt= (- (V-Vr)+x)* (1./taum) : volt
dx/dt=(-x+y) * (1./taupsp) : volt

dy/dt=-y* (1./taupsp) +25.27+mV/ms+\
(39.24mV/msx%0.5) «xi : volt
)
# Neuron groups
P = NeuronGroup (N=1000, model=eqgs,
threshold=Vt, reset=Vr, refractory=1 x ms)
Pinput = PulsePacket (t=50 % ms, n=85, sigma=1 * ms)
# The network structure
Pgp = [ P.subgroup(100) for i in range (10)]
C = Connection(P, P, 'v’)
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for i in range(9):

C.connect_full (Pgp[i], Pgpli + 1], weight)
Cinput = Connection (Pinput, Pgpl[0], 'v’)
Cinput.connect_full (weight=weight)

monitor = SoundMonitor (P)

# Setup the network,

and run it

P.V = Vr + rand(len(P)) = (Vt - Vr)

run (1 «second)
# Plot result

show ()

if name == '__main_ ’:

test_synfire()

Example: MicheleGiugliano (twister)

Michele Giugliano’s entry for the 2012 Brian twister.

spontaneous patterned

o H R W O R R W R %R W R R %

from brian import =

FigurebB - from Giugliano et al., 2004
Journal of Neurophysiology 92 (2):977-96

implemented by Eleni Vasilaki <e.vasilaki@sheffield.ac.uk> and
Michele Giugliano <michele.giugliano@ua.ac.be>

A sparsely connected network of excitatory neurons, interacting
via current-based synaptic interactions, and incorporating

spike-frequency adaptation, is simulated.

Its overall emerging firing rate activity replicates some of the features of

electrical activity, observed experimentally in cultured

networks of neurons dissociated from the neocortex.

# Parameters of the simulation
T = 30000 +ms # life time of the simulation
N = 100 # total number of (excitatory) integrate-and-fire model neurons in the network

# Parameters of each model neuron, voltage dynamics

¢ = 67.95 *pF #
tau = 22.25 +ms
H = 2.39 *«mV

theta= 20 *mv
tauvarp=7.76 xms

HH ¥ H

Membrane capacitance of single model neurons

Membrane time-constant of single model neurons

Reset voltage, mimicking hyperpolarization potential following a spike
Threshold voltage for spike initiation

Absolute refractory period

# Parameters of each model neuron, spike-frequency adaptation dynamics

taua = 2100 »*ms #
a = 0.75 *pA #
D = 1*ms #
temp = 1. sms*x(-.5) #

# Parameters of network

Adaptation time constant
Adaptation scaling factor - NO ADAPTATION
Unit consistency factor
Unit consistency factor

connectivity
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Cee = 0.38 # Sparseness of all-to-all random connectivity
taue = 5 *ms # Decay time constant of excitatory EPSPs
delta= 1.5 * ms # Conduction+synaptic propagation delay

J = 14.5% pA # Strenght of synaptic coupling, up to 18 #*pA

# Parameters of background synaptic activity, modelled as a identical and independent noisy extra-—inj
m0 = 25.1 *pA # Mean background input current
s0 = 92 *pA # Std dev of the (noisy) background input current

# Each model neuron is described as a leaky integrate-and-fire with adaptation and current-driven syl

nun

eqgs =

dv/dt = - v / tau - a/C » x + Ie/C + (m0 + s0 » xi / temp)/C : mV
dx/dt = -x/taua : 1

dIe/dt = -Ie/taue : pA

nwn

# Custom refractory mechanisms are employed here, to allow the membrane potential to be clamped to ti
def myresetfunc (P, spikes):

P.v[spikes] = H #reset voltage

P.x[spikes] += 1 #low pass filter of spikes (adaptation mechanism)

SCR = SimpleCustomRefractoriness (myresetfunc, tauarp, state=’'v’)

# The population of identical N model neuon is defined now
P = NeuronGroup (N, model=eqgs, threshold=theta, reset=SCR)

# The interneuronal connectivity is defined now
Ce = Connection(P, P, 'Ie’, weight=J, sparseness=Cee, delay=delta)

# Initialization of the state variables, for each model neuron
P.v = rand(len(P)) * 20 » mV #membrane potential

P.x = rand(len(P)) * 2 #low pass filter of spikes
P.Ie = 0 *pA #excitatory synaptic input

# Definition of tools for plotting and visualization of single neuron and population quantities

R = PopulationRateMonitor (P)

M = SpikeMonitor (P)

trace = StateMonitor (P, ’'v’, record=0)

tracex = StateMonitor (P, ’'x’, record=0)

print "Simulation running... (long-lasting simulation: be patient)"

run (T)

print "Simulation completed! If you did not see any firing rate population burst (lower panel), then

# Plot nice spikes - adapted from Brette’s code
v = trace[0]
spikesO0 = [t for i,t in M.spikes if i==0]
for i in range (0, len(spikes0)):
k = int (spikes0[i] / defaultclock.dt)
vm[k] = 80 * mV

subplot (311) #membrane potential of neuron 0
plot (trace.times / ms, vm / mV — 60)

subplot (312) #raster plot
raster_plot (M)
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subplot (313) #smoothed population rate

plot (R.times / ms, R.smooth_rate(5+ms) / Hz, tracex.times / ms,

y1lim(0, 120)

show ()

Example: QuentinPauluis (twister)

Quentin Pauluis’s entry for the 2012 Brian twister.

from brian import =

taum = 20 * ms # membrane time constant
taue = 5 x ms # excitatory synaptic time constant
taui = 10 x ms # inhibitory synaptic time constant
vVt = =50 * mV # spike threshold
Vr = -60 * mV # reset value
El = -49 « mV # resting potential
we = (60 » 0.27 / 10) %= mV # excitatory synaptic weight
wi (20 = 4.5 / 10) » mV # inhibitory synaptic weight
egs = Equations(’’’
dv/dt = (ge-gi-(V-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt

!ll)

G = NeuronGroup (4000, model=eqgs, threshold=Vt, reset=Vr)
Ge = G.subgroup(3200) # Excitatory neurons

Gi = G.subgroup(800) # Inhibitory neurons

Ce = Connection(Ge, G, ’'ge’, sparseness=0.2, weight=we)

Ci = Connection(Gi, G, ’'gi’, sparseness=0.2, weight=wix10)
Cii=Connection(Gi,Gi,"gi’,sparseness=0.2, weight=wi)

M = SpikeMonitor (G)

E=SpikeMonitor (Ge,’ +")

I=SpikeMonitor (Gi, " o")

MV = StateMonitor (G, ’'V’, record=0)

Mge StateMonitor (G, 'ge’, record=0)

Mgi StateMonitor (G, 'gi’, record=0)

G.V = Vr + (Vt - Vr) * rand(len(G))

run (2500 * ms)

subplot (211)

raster_plot (M, title=’The CUBA network’, newfigure=False)
raster_plot (E)

raster_plot (I)

subplot (223)

plot (MV.times / ms, MV[0] / mV)

xlabel (' Time (ms)’)

ylabel (V (mV)’)

subplot (224)

plot (Mge.times / ms, Mge[0] / mV)
plot (Mgi.times / ms, Mgi[0] / mV)
xlabel (' Time (ms)’)

ylabel ("ge and gi (mV)")
legend(('ge’, ’"gi’), ’'upper right’)
show ()

#new.Figure
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3.2.8 misc

Example: rate_model (misc)

A rate model

from brian import =

N = 50000

tau = 20 * ms
I = 10 % Hz
egqs = "'’
dv/dt=(I-v)/tau : Hz # note the unit here: this is the output rate

group = NeuronGroup (N, eqgs, threshold=PoissonThreshold())
S = PopulationRateMonitor (group, bin=1 * ms)

run (100 = ms)

plot (S.rate)
show ()

Example: I-F_curve (misc)

Input-Frequency curve of a neuron (cortical RS type) Network: 1000 unconnected integrate-and-fire neurons (Brette-
Gerstner) with an input parameter 1. The input is set differently for each neuron. Spikes are sent to a ‘neuron’ group
with the same size and variable n, which has the role of a spike counter.

from brian import =
from brian.library.IF import =

N = 1000

egs = Brette_Gerstner () + Current('I:amp’)

print egs

group = NeuronGroup (N, model=eqgs, threshold= -20 » mV, reset=AdaptiveReset())
group.vm = —-70 * mV

group.Il = linspace(0 = nA, 1 % nA, N)

counter = NeuronGroup (N, model="n:1")
C = IdentityConnection (group, counter, ’'n’)

i =N« 8/ 10
trace = StateMonitor (group, 'vm’, record=i)

duration = 5 % second

run (duration)

subplot (211)

plot (group.I / nA, counter.n / duration)
xlabel ("I (nA)’)

ylabel ('Firing rate (Hz)’)

subplot (212)

plot (trace.times / ms, tracel[i] / mV)
xlabel (' Time (ms)’)

ylabel (/Vm (mV)’)

show ()
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Example: COBAHH (misc)

This is an implementation of a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph, Carnevale,
Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, NatschlAger, Pecevski, Ermentrout, Djurfeldt, Lansner,
Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience

Benchmark 3: random network of HH neurons with exponential synaptic conductances
Clock-driven implementation (no spike time interpolation)

18. Brette - Dec 2007
70s for dt=0.1 ms with exponential Euler

from brian import =

# Parameters

area = 20000 % umetre *x 2

Cm = (1 * ufarad » cm %+ —-2) % area

gl = (5e-5 % siemens * cm %% —2) * area
El = -60 » mV

EK = -90 * mV

ENa = 50 *» mV

g_na = (100 » msiemens * cm *x —2) % area
g_kd = (30 » msiemens x cm %% —2) *x area
VT = -63 % mV

# Time constants

taue = 5 * ms

taui = 10 » ms

# Reversal potentials
Ee = 0 » mV

Ei = -80 * mV
we = 6 x nS # excitatory synaptic weight (voltage)
wi = 67 x nS # inhibitory synaptic weight

# The model
egs = Equations(’’’
dv/dt = (gl* (El-v)+gex (Ee-v)+gi* (Ei-v) -\
g_nax (m*m*m) *h* (v—ENa) —\
g_kd* (nxn*n*n) x (v—EK) ) /Cm : volt
dm/dt = alpham* (1-m)-betam*m : 1
dn/dt = alphanx* (1-n)-betan*n : 1
dh/dt = alphahx (1-h)-betahxh : 1
dge/dt -ge* (1./taue) : siemens
dgi/dt -gi*(1l./taui) : siemens
alpham = 0.32% (mVx*—1) * (13*mV-v+VT)/ \
(exp ((13*mV-v+VT)/ (4*mV))~-1.)/ms : Hz
betam = 0.28% (mV**—1) % (v-VT-40*mV) / \
(exp ((v=VT-40+mV) / (5+mV))—-1) /ms : Hz
alphah = 0.128%exp ((17+mV-v+VT)/ (18xmV))/ms : Hz
betah = 4./ (1l+exp ((40*mV-v+VT)/ (5*xmV)))/ms : Hz
alphan = 0.032% (mV*%—1) % (15+mV-v+VT)/ \
(exp ((15*mV-v+VT) / (5+mV))~-1.)/ms : Hz
betan = .5%exp ((10+mV-v+VT)/ (40*mV))/ms : Hz

Irl)

P = NeuronGroup (4000, model=egs,
threshold=EmpiricalThreshold(threshold= -20 * mV,
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refractory=3 * ms),
implicit=True, freeze=True)
Pe = P.subgroup (3200)
Pi = P.subgroup (800)
Ce Connection(Pe, P, ’'ge’, weight=we, sparseness=0.02)
Ci Connection(Pi, P, ’"gi’, weight=wi, sparseness=0.02)
# Initialization
P.v = E1 + (randn(len(P)) = 5 — 5) % mV
P.ge = (randn(len(P)) = 1.5 + 4) x 10. % nS
P.gi = (randn(len(P)) = 12 + 20) = 10. = nS

# Record the number of spikes and a few traces
trace = StateMonitor (P, ’'v’, record=[1l, 10, 100])

run (1l * second)
plot (tracel[l])
plot (trace[10])

(
(
plot (trace[100])
show ()

Example: timed_array (misc)

An example of the TimedArray class used for applying input currents to neurons.

from brian import =

N =5

duration = 100 % ms
Vr = -60 % mV

vVt = -50 * mV

tau = 10 » ms

Rmin = 1 * Mohm

Rmax = 10 + Mohm
freq = 50 % Hz

k = 10 = nA

egs = """’

dv/dt = (- (V-Vr)+RxI)/tau : volt
R : ohm

I : amp

rrr

G = NeuronGroup (N, eqgs, reset='V=Vr’, threshold='V>Vt’)
G.R = linspace (Rmin, Rmax, N)

t = linspace (0 * second, duration, int (duration / defaultclock.dt))
I = clip(k % sin(2 * pi » freq * t), 0, Inf)
G.I = TimedArray (I)

M MultiStateMonitor (G, record=True)

run (duration)
subplot (211)

M[’I’].plot ()
ylabel (T (amp)’)
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subplot (212)
M[’V"].plot ()
ylabel ('V (volt)’)
show ()

Example: pulsepacket (misc)

This example basically replicates what the Brian PulsePacket object does, and then compares to that object.

from brian import =
from random import gauss, shuffle

# Generator for pulse packet

def pulse_packet (t, n, sigma):
# generate a list of n times with Gaussian distribution, sort them in time, and
# then randomly assign the neuron numbers to them

times = [gauss(t, sigma) for i in range (n)]
times.sort ()
neuron = range (n)

shuffle (neuron)
return zip(neuron, times) # returns a list of pairs (i,t)

Gl SpikeGeneratorGroup (1000, pulse_packet (50 * ms, 1000, 5 % ms))
M1 SpikeMonitor (G1)
PRM1 = PopulationRateMonitor (Gl, bin=1 * ms)

G2 PulsePacket (50 # ms, 1000, 5 % ms)
M2 SpikeMonitor (G2)
PRM2 = PopulationRateMonitor (G2, bin=1 x ms)

run (100 * ms)

subplot (221)
raster_plot (M1)
subplot (223)
plot (PRM1l.rate)
subplot (222)
raster_plot (M2)
subplot (224)
plot (PRM2.rate)
show ()

Example: stim2d (misc)

Example of a 2D stimulus, see the complete description at the Brian Cookbook.

from brian import =«
import scipy.ndimage as im

all__ = ['bar’, ’'StimulusArrayGroup’]

def bar (width, height, thickness, angle):
rrs

An array of given dimensions with a bar of given thickness and angle

rrs

stimulus = zeros ((width, height))
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stimulus[:, int (height / 2. - thickness / 2.):int (height / 2. + thickness / 2.)] =
stimulus = im.rotate(stimulus, angle, reshape=False)
return stimulus

class StimulusArrayGroup (PoissonGroup) :
rrs

A group of neurons which fire with a given stimulus at a given rate
The argument ‘‘stimulus‘'' should be a 2D array with values between 0 and 1.
The point in the stimulus array at position (y,x) will correspond to the
neuron with index i=y*width+x. This neuron will fire Poisson spikes at

‘‘ratexstimulus[y,x] ‘' Hz. The stimulus will start at time ‘‘onset '’
for ‘‘duration'‘.
rry
def _ init_ (self, stimulus, rate, onset, duration):
height, width = stimulus.shape
stim = stimulus.ravel () rrate
self.stimulus = stim

def stimfunc(t):
if onset < t < (onset + duration):
return stim

else:
return 0. * Hz
PoissonGroup.__init__ (self, width * height, stimfunc)
if _ name_ == '__ _main_ ’:

import pylab

subplot (121)

stim = bar (100, 100, 10, 90) = 0.9 + 0.1
pylab.imshow (stim, origin=’lower’)
pylab.gray ()

G = StimulusArrayGroup (stim, 50 » Hz, 100 * ms, 100 * ms)
M = SpikeMonitor (G)

run (300 * ms)

subplot (122)

raster_plot (M)

axis (xmin=0, xmax=300)

show ()

Example: I-F_curve2 (misc)

Input-Frequency curve of a IF model Network: 1000 unconnected integrate-and-fire neurons (leaky IF) with an input
parameter v0O. The input is set differently for each neuron. Spikes are sent to a spike counter (counts the spikes emitted
by each neuron).

from brian import =

N = 1000

tau = 10 » ms

egs = """’
dv/dt=(v0-v) /tau : volt
v0 : volt

group = NeuronGroup (N, model=eqgs, threshold=10 » mV, reset=0 x mV, refractory=5 % ms)
group.v = 0 * mV
group.v0 = linspace(0 * mV, 20 % mV, N)
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counter = SpikeCounter (group)

duration = 5 % second

run (duration)

plot (group.v0 / mV, counter.count / duration)
show ()

Example: current_clamp (misc)
An example of single-electrode current clamp recording with bridge compensation (using the electrophysiology li-
brary).

from brian import =
from brian.library.electrophysiology import x

taum = 20 * ms # membrane time constant
gl = 1. / (50 % Mohm) # leak conductance

Cm = taum * gl # membrane capacitance

Re = 50 » Mohm # electrode resistance

Ce = 0.5 » ms / Re # electrode capacitance
egs = Equations(’’’

dvm/dt=(-gl*vm+i_inj)/Cm : volt

Rbridge:ohm # bridge resistance

I:amp # command current

)

egs += current_clamp(i_cmd="1", Re=Re, Ce=Ce, bridge=’'Rbridge’)
setup = NeuronGroup(l, model=eqgs)

soma = StateMonitor (setup, ’'vm’, record=True)

recording = StateMonitor (setup, ’'v_rec’, record=True)

# No compensation
run (50 + ms)
setup.I = .5 % nA
run (100 = ms)
setup.I = 0 % nA
run (50 = ms)

# Full compensation
setup.Rbridge = Re
run (50 * ms)
setup.I = .5 * nA
run (100 ms)
setup.I = 0 % nA
run (50 + ms)

*

plot (recording.times / ms, recording[0] / mV, ’'b’)
plot (soma.times / ms, somal[0] / mV, ’'r’)
show ()

Example: CUBA (misc)

This is a Brian script implementing a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
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Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98

Benchmark 2: random network of integrate-and-fire neurons with exponential synaptic currents

Clock-driven implementation with exact subthreshold integration (but spike times are aligned to the grid)

R. Brette - Oct 2007

Brian is a simulator for spiking neural networks written in Python, developed by R. Brette and D. Goodman.

http://brian.di.ens.fr

from brian import =«
import time

start_time = time.time ()

taum = 20 * ms

taue = 5 « ms

taui = 10 * ms

vVt = -50 * mV

Vr = -60 » mV

El = 49 » mV

egs = Equations(’’’

dv/dt = (ge+gi-(v-El))/taum volt
dge/dt = —-ge/taue volt

dgi/dt = —-gi/taui volt

)

P = NeuronGroup (4000, model=eqgs, threshold=Vt, reset=Vr,
P.v = Vr

P.ge = 0 » mV

P.gli = 0 » mV

Pe = .subgroup (3200)

P

Pi = P.subgroup(800)
(
(

we = (60 x 0.27 / 10) * mV # excitatory synaptic weight
wi = (=20 « 4.5 / 10) = mV # inhibitory synaptic weight
Ce = Connection(Pe, P, ’'ge’, weight=we, sparseness=0.02)
Ci = Connection(Pi, P, ’'gi’, weight=wi, sparseness=0.02)
P.v = Vr + rand(len(P)) = (Vt - Vr)

# Record the number of spikes
Me = PopulationSpikeCounter (Pe)
Mi = PopulationSpikeCounter (P1i)
# A population rate monitor

M = PopulationRateMonitor (P)

print "Network construction time:", time.time() - start_time,
print len(P), "neurons in the network"

print "Simulation running..."

run (1l * msecond)

start_time = time.time ()

run(l % second)
— start_time

duration,
"excitatory spikes"

time.time ()
"Simulation time:",

duration =
print
print Me.nspikes,

"seconds"

refractory=5 % ms)

(voltage)

"seconds"
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print Mi.nspikes, "inhibitory spikes"
plot (M.times / ms, M.smooth_rate(2 » ms, ’gaussian’))
show ()

Example: spikes_io (misc)

This script demonstrates how to save/load spikes in AER format from inside Brian.

from brian import =
#H#AHA A A AR A A ARAH SAVING ####### A AHAAARA A AAAFAAA

# First we need to generate some spikes
N = 1000
g = PoissonGroup (N, 200+Hz)

# And set up a monitor to record those spikes to the disk
Maer = AERSpikeMonitor (g, ’./dummy.aedat’)

# Now we can run
run (100+ms)

# This line executed automatically when the script ends, but here we
# need to close the file because we re-use it from within the same script
Maer.close ()

clear (all = True)
reinit_default_clock ()
FHAHFHARAAAFAFFHHHHH### LOADING ##A##A##H#HHHAHAAAA#FFHFHFHAS

# Now we can re-load the spikes
addr, timestamps = load_aer (’./dummy.aedat’)

# Feed them to a SpikeGeneratorGroup
group = SpikeGeneratorGroup (N, (addr, timestamps))

# The group can now be used as any other, here we choose to monitor
# the spikes
newM = SpikeMonitor (group, record = True)

run (100+ms)
# And plot the result

raster_plot (newM)
show ()

Example: non_reliability (misc)

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.
Here: a constant current is injected in all trials.

18. Brette
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from brian import =

N = 25
tau = 20 * ms
sigma = .015

rrr

egs_neurons =
dx/dt=(1.1-x)/taut+sigmax (2./tau) **.5xx1i:1

rrr

neurons = NeuronGroup (N, model=eqgs_neurons, threshold=1, reset=0, refractory=5 % ms)

spikes = SpikeMonitor (neurons)
run (500 = ms)

raster_plot (spikes)
show ()

Example: poisson (misc)

This example demonstrates the PoissonGroup object. Here we have used a custom function to generate different rates

at different times.
This example also demonstrates a custom SpikeMonitor.

#import brian no_units # uncomment to run faster
from brian import =

# Rates

rl
r2

arange (101, 201) = 0.1 % Hz
arange (1, 101) = 0.1 % Hz

def myrates (t):
if t < 10 » second:
return rl
else:
return r2
# More compact: myrates=lambda t: (t<l0Oxsecond and rl) or r2

# Neuron group
P = PoissonGroup (100, myrates)

# Calculation of rates
ns = zeros (len(P))

def ratemonitor (spikes):
ns[spikes] += 1

Mf = SpikeMonitor (P, function=ratemonitor)
M = SpikeMonitor (P)

# Simulation and plotting
run (10 ~ second)

print "Rates after 10s:"
print ns / (10 = second)
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run (10 » second)
print "Rates after 20s:"
print ns / (10 % second)

raster_plot ()
show ()

Example: multipleclocks (misc)

This example demonstrates using different clocks for different objects in the network. The clock simclock is the
clock used for the underlying simulation. The clock monclock is the clock used for monitoring the membrane
potential. This monitoring takes place less frequently than the simulation update step to save time and memory.
Finally, the clock inputclock controls when the external ‘current’” Iext should be updated. In this case, we
update it infrequently so we can see the effect on the network.

This example also demonstrates the @network_operation decorator. A function with this decorator will be run as part
of the network update step, in sync with the clock provided (or the default one if none is provided).

from brian import =

# define the three clocks

simclock = Clock (dt=0.1 * ms)

monclock = Clock (dt=0.3 * ms)

inputclock = Clock (dt=100 * ms)

# simple leaky I&F model with external ’‘current’ Iext as a parameter

tau = 10 * ms
eqS:II!
dv/dt = (-V+Iext)/tau : volt

Iext: volt
# A single leaky I&F neuron with simclock as its clock
G = NeuronGroup (l, model=eqgs, reset=0 % mV, threshold=10 % mV, clock=simclock)
G.V = 5 % mV
# This function will be run in sync with inputclock i.e. every 100 ms
@network_operation (clock=inputclock)
def update_TIext () :
G.Iext = rand(len(G)) = 20 % mV
# V is monitored in sync with monclock
MV = StateMonitor (G, ’'V’, record=0, clock=monclock)
# run and plot
run (1000 * ms)
plot (MV.times / ms, MV[0] / mV)
show ()
# You should see 10 different regions, sometimes Iext will be above threshold
# in which case you will see regular spiking at different rates, and sometimes
# it will be below threshold in which case you’ll see exponential decay to that
# value

Example: two_neurons (misc)

Two connected neurons with delays

from brian import =

tau = 10 * ms

w = -1 % mV

v0 = 11 = mV

neurons = NeuronGroup (2, model='dv/dt=(v0-v)/tau : volt’, threshold=10 * mV, reset=0 » mV, \
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max_delay=5 % ms)

neurons.v = rand(2) * 10 » mV

W = Connection (neurons, neurons, ’'v’, delay=2 * ms)
W[0, 1] = w

W[l, 0] = w

S = StateMonitor (neurons, ’'v’, record=True)

#mymonitor=SpikeMonitor (neurons/[0])
mymonitor = PopulationSpikeCounter (neurons)

run (500 * ms)

plot (S.times / ms, S[0] / mV)
plot (S.times / ms, S[1] / mV)
show ()

Example: phase_locking (misc)

Phase locking of IF neurons to a periodic input

from brian import =

tau = 20 * ms
N = 100
b = 1.2 # constant current mean, the modulation varies

f = 10 % Hz
eqS:II!
dv/dt=(-v+axsin (2+«pixfxt)+b)/tau : 1
a : 1

rrr

neurons = NeuronGroup (N, model=eqs, threshold=1l, reset=0)

neurons.v = rand(N)

neurons.a = linspace (.05, 0.75, N)

S = SpikeMonitor (neurons)

trace = StateMonitor (neurons, ’'v’, record=50)

run (1000 % ms)

subplot (211)

raster_plot (S)

subplot (212)

plot (trace.times / ms, trace[50])
show ()

Example: realtime_plotting (misc)

Realtime plotting example

# These lines are necessary for interactive plotting when launching from the

# Eclipse IDE, they may not be necessary in every environment.

import matplotlib

matplotlib.use (' WXAgg’) # You may need to experiment, try WXAgg, GTKAgg, QTAgg, TkAgg

from brian import =«
###### Set up the standard CUBA example ######
N = 4000

egs = rrr
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dv/dt = (ge+gi-(v+49+mV))/(20+ms) : volt
dge/dt = -ge/ (5*ms) : volt
dgi/dt = —-gi/ (10*ms) : volt

rrr

P = NeuronGroup (N, egs, threshold= -50 * mV, reset= -60 % mV)
P.v = 60 » mV + 10 » mV % rand(len(P))

Pe = P.subgroup(3200)

Pi = P.subgroup(800)

Ce = Connection(Pe, P, 'ge’, weight=1.62 % mV, sparseness=0.02)
Ci = Connection(Pi, P, ’"gi’, weight= -9 » mV, sparseness=0.02)

M = SpikeMonitor (P)
trace = RecentStateMonitor (P, ’'v’, record=range(5), duration=200 % ms)

ion ()

subplot (211)

raster_plot (M, refresh=10 » ms, showlast=200 % ms, redraw=False)
subplot (212)

trace.plot (refresh=10 * ms, showlast=200 % ms)

run (1l * second)

ioff () # switch interactive mode off
show() # and wait for user to close the window before shutting down

Example: van_rossum_metric (misc)

Example of how to use the van Rossum metric.

The VanRossumMetric function, which is defined as a monitor and therefore works online, computes the metric
between every neuron in a given population. The present example show the concept of phase locking: N neurons are

driven by sinusoidal inputs with different amplitude.

Use: output=VanRossumMetric(source, tau=4 * ms)

source is a NeuronGroup of N neurons tau is the time constant of the kernel used in the metric

output is a monitor with attribute distance which is the distance matrix between the neurons in source

from brian import =«
from time import time

tau=20+ms

N=100

b=1.2 # constant current mean, the modulation varies
f=10+Hz

delta =2x*ms

eqs:l//

dv/dt=(-v+a*sin (2xpixf*t)+b)/tau : 1
a 1

rrr

neurons=NeuronGroup (N, model=eqgs, threshold=1, reset=0)
neurons.v=rand (N)

neurons.a=linspace(.05,0.75,N)

S=SpikeMonitor (neurons)

trace=StateMonitor (neurons,’v’, record=50)
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van_rossum_metric=VanRossumMetric (neurons,

run (1000+ms)

raster_plot (S)
title ('Raster plot’)

figure ()

title(’'Distance matrix between spike trains’)
imshow (van_rossum_metric.distance)

colorbar ()

show ()

Example: remotecontrolclient (misc)

Example of using RemoteControlServer and RemoteControlClient to control a simulation as it runs in

Brian.

Run the script remotecontrolserver.py before running this.

from brian import =
import time

client =

time.sleep (1)

subplot (121)
plot (xclient.evaluate (’ (M.times,

client.execute (’

time.sleep (1)

subplot (122)
plot (xclient.evaluate(’ (M.times,

client.stop()

show ()

Example: adaptive_threshold (misc)

A model with adaptive threshold (increases with each spike)

from brian import =

rr

eqgs =
dv/dt =
dvt/dt =

rrr

reset =
v=0+mV
vt+=3+mV

rrr

’

’

’

RemoteControlClient ()

-v/ (10*ms)
(10xmV-vt) / (15*ms)

’

M.values)’))

M.values)’))
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IF = NeuronGroup(l, model=eqgs, reset=reset, threshold="v>vt’)
IF.rest ()

PG = PoissonGroup(l, 500 * Hz)

C = Connection (PG, IF, 'v’, weight=3 % mV)

Mv = StateMonitor (IF, ’'v’, record=True)

Mvt = StateMonitor (IF, ’'vt’, record=True)

run (100 = ms)

plot (Mv.times / ms, Mv[0] / mV)
plot (Mvt.times / ms, Mvt[0] / mV)

show ()

Example: delays (misc)

Random network with external noise and transmission delays

from brian import =

tau = 10 * ms

sigma = 5 * mV

eqgs = ’'dv/dt = -v/tautsigma*xi/tau*xx.5 : volt’

P = NeuronGroup (4000, model=eqs, threshold=10 * mV, reset=0 * mV, \
refractory=5 * ms)

P.v = -60 » mV

Pe = P.subgroup(3200)

Pi = P.subgroup (800)

C = Connection(P, P, 'v’, delay=2 % ms)

C.connect_random (Pe, P, 0.05, weight=.7 % mV)

C.connect_random(Pi, P, 0.05, weight= -2.8 * mV)

M = SpikeMonitor (P, True)

run (1l » second)

print 'Mean rate =’, M.nspikes / 4000. / second
raster_plot (M)

show ()

Example: heterogeneous_delays (misc)

Script demonstrating use of a Connect ion with homogenenous delays

The network consists of a ‘starter’ neuron which fires a single spike at time t=0, connected to 100 leaky integrate and
fire neurons with different delays for each target neuron, with the delays forming a quadratic curve centred at neuron
50. The longest delay is 10ms, and the network is run for 40ms. At the end, the delays are plotted above a colour plot
of the membrane potential of each of the target neurons as a function of time (demonstrating the delays).

from brian impor