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CHAPTER

ONE

INTRODUCTION

Brian is a clock driven simulator for spiking neural networks, written in the Python programming language.

The simulator is written almost entirely in Python. The idea is that it can be used at various levels of abstraction
without the steep learning curve of software like Neuron, where you have to learn their own programming language
to extend their models. As a language, Python is well suited to this task because it is easy to learn, well known and
supported, and allows a great deal of flexibility in usage and in designing interfaces and abstraction mechanisms. As
an interpreted language, and therefore slower than say C++, Python is not the obvious choice for writing a computa-
tionally demanding scientific application. However, the SciPy module for Python provides very efficient linear algebra
routines, which means that vectorised code can be very fast.

Here’s what the Python web site has to say about themselves:

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and
a simple but effective approach to object-oriented programming. Python’s elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for
all major platforms from the Python Web site, http://www.python.org/, and may be freely distributed. The
same site also contains distributions of and pointers to many free third party Python modules, programs
and tools, and additional documentation.

As an example of the ease of use and clarity of programs written in Brian, the following script defines and runs a
randomly connected network of 4000 integrate and fire neurons with exponential currents:

from brian import *
eqs=’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’
P=NeuronGroup(4000,model=eqs,threshold=-50*mV,reset=-60*mV)
P.v=-60*mV
Pe=P.subgroup(3200)
Pi=P.subgroup(800)
Ce=Connection(Pe,P,’ge’,weight=1.62*mV,sparseness=0.02)
Ci=Connection(Pi,P,’gi’,weight=-9*mV,sparseness=0.02)
M=SpikeMonitor(P)
run(1*second)
raster_plot(M)
show()

As an example of the output of Brian, the following two images reproduce figures from Diesmann et al. 1999 on
synfire chains. The first is a raster plot of a synfire chain showing the stabilisation of the chain.
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The simulation of 1000 neurons in 10 layers, each all-to-all connected to the next, using integrate and fire neurons with
synaptic noise for 100ms of simulated time took 1 second to run with a timestep of 0.1ms on a 2.4GHz Intel Xeon
dual-core processor. The next image is of the state space, figure 3:
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The figure computed 50 averages for each of 121 starting points over 100ms at a timestep of 0.1ms and took 201s to
run on the same processor as above.
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CHAPTER

TWO

INSTALLATION

If you already have a copy of Python 2.5-2.7, try the Quick installation below, otherwise take a look at Manual
installation.

2.1 Quick installation

2.1.1 easy_install / pip

The easiest way to install the most recent version of Brian if you already have a version of Python 2.5-2.7 including
the easy_install script is to simply run the following in a shell:

easy_install brian

This will download and install Brian and all its required packages (NumPy, SciPy, etc.).

Similarly, you can use the pip utility:

pip install brian

Note that there are some optimisations you can make after installation, see the section below on Optimisations.

2.1.2 Debian/Ubuntu packages

If you use a Debian-based Linux distribution (in addition to Debian itself, this includes for example Ubuntu or Linux
Mint), you can install Brian directly from your favourite package manager (e.g. Synaptic or the Ubuntu Software
Centre), thanks to the packages provided by the NeuroDebian team.

The package is called python-brian, the documentation and tutorials can be found in python-brian-doc. To
install these packages from the command-line use:

sudo apt-get install python-brian python-brian-doc

Note that in contrast to the procedure described above for easy_install / pip, you will not necessarily get the most
recent version of Brian this way. On the other hand, you do not have to take care of future updates yourself, as the
Brian package gets updated with the standard update process. Additionally, the Brian package already includes all
the compiled C code mentioned in the Optimisations section. Another way to install Brian which combines these
advantages with up-to-date versions is to directly add the NeuroDebian repository to your software sources.
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2.2 Manual installation

Installing Brian requires the following components:

1. Python version 2.5-2.7.

2. NumPy and Scipy packages for Python: an efficient scientific library.

3. PyLab package for Python: a plotting library similar to Matlab (see the detailed installation instructions).

4. SymPy package for Python: a library for symbolic mathematics (not mandatory yet for Brian).

5. Brian itself (don’t forget to download the extras.zip file, which includes examples, tutorials, and a complete
copy of the documentation). Brian is also a Python package and can be installed as explained below.

Fortunately, Python packages are very quick and easy to install, so the whole process shouldn’t take very long.

We also recommend using the following for writing programs in Python (see details below):

1. Eclipse IDE with PyDev

2. IPython shell

Finally, if you want to use the (optional) automatic C++ code generation features of Brian, you should have the gcc
compiler installed (on Cygwin if you are running on Windows).

Mac users: The Enthought Python Distribution (EPD ) is free for academics and contains all the libraries necessary to
run Brian. Otherwise, the Scipy Superpack for Intel OS X also includes versions of Numpy, Scipy, Pylab and IPython.

Windows users: the Python(x,y) distribution includes all the packages (including Eclipse and IPython) above except
Brian (which is available as an optional plugin).

Another option is the Anaconda distribution, which also includes all the packages above except Brian and Eclipse.

2.2.1 Installing Python packages

On Windows, Python packages (including Brian) are generally installed simply by running an .exe file. On other
operating systems, you can download the source release (typically a compressed archive .tar.gz or .zip that you need
to unzip) and then install the package by typing the following in your shell:

python setup.py install

2.2.2 Installing Eclipse

Eclipse is an Integrated Development Environment (IDE) for any programming language. PyDev is a plugin for
Eclipse with features specifically for Python development. The combination of these two is excellent for Python
development (it’s what we use for writing Brian).

To install Eclipse, go to their web page and download any of the base language IDEs. It doesn’t matter which one, but
Python is not one of the base languages so you have to choose an alternative language. Probably the most useful is the
C++ one or the Java one. The C++ one can be downloaded here.

Having downloaded and installed Eclipse, you should download and install the PyDev plugin from their web site. The
best way to do this is directly from within the Eclipse IDE. Follow the instructions on the PyDev manual page.

6 Chapter 2. Installation

http://www.python.org/download/
http://www.scipy.org/Download
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/installing.html
http://code.google.com/p/sympy/
http://neuralensemble.org/trac/brian/wiki/Downloads
http://www.eclipse.org/
http://pydev.sourceforge.net/
http://ipython.scipy.org/moin/
http://www.cygwin.com/
http://www.enthought.com/products/edudownload.php/
http://fonnesbeck.github.com/ScipySuperpack/
http://www.pythonxy.com/
http://continuum.io/anaconda.html
http://www.eclipse.org/
http://www.eclipse.org/cdt/downloads.php
http://pydev.sourceforge.net/
http://pydev.org/manual_101_root.html


Brian Documentation, Release 1.4.1

2.2.3 Installing IPython

IPython is an interactive shell for Python. It has features for SciPy and PyLab built in, so it is a good choice for
scientific work. Download from their page. If you are using Windows, you will also need to download PyReadline
from the same page.

2.2.4 C++ compilers

The default for Brian is to use the gcc compiler which will be installed already on most unix or linux distributions. If
you are using Windows, you can install cygwin (make sure to include the gcc package). Alternatively, some but not
all versions of Microsoft Visual C++ should be compatible, but this is untested so far. See the documentation for the
SciPy Weave package for more information on this. Mac users should have XCode installed so as to have access to
gcc and hence take advantage of brian compiled code. See also the section on Compiled code.

2.3 Testing

You can test whether Brian has installed properly by running Python and typing the following two lines:

from brian import *
brian_sample_run()

A sample network should run and produce a raster plot.

2.4 Optimisations

After a successful installation, there are some optimisations you can make to your Brian installation to get it running
faster using compiled C code. We do not include these as standard because they do not work on all computers, and
we want Brian to install without problems on all computers. Note that including all the optimisations can result in
significant speed increases (around 30%).

These optimisations are described in detail in the section on Compiled code.
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CHAPTER

THREE

GETTING STARTED

3.1 Tutorials

These tutorials cover some basic topics in writing Brian scripts in Python. The complete source code for the tutorials
is available in the tutorials folder in the extras package.

3.1.1 Tutorials for Python and Scipy

Python

The first thing to do in learning how to use Brian is to have a basic grasp of the Python programming language. There
are lots of good tutorials already out there. The best one is probably the official Python tutorial. There is also a course
for biologists at the Pasteur Institute: Introduction to programming using Python.

NumPy, SciPy and Pylab

The first place to look is the SciPy documentation website. To start using Brian, you do not need to understand much
about how NumPy and SciPy work, although understanding how their array structures work will be useful for more
advanced uses of Brian.

The syntax of the Numpy and Pylab functions is very similar to Matlab. If you already know Matlab, you could read
this tutorial: NumPy for Matlab users and this list of Matlab-Python translations (pdf version here). A tutorial is also
available on the web site of Pylab.

3.1.2 Tutorial 1: Basic Concepts

In this tutorial, we introduce some of the basic concepts of a Brian simulation:

• Importing the Brian module into Python

• Using quantities with units

• Defining a neuron model by its differential equation

• Creating a group of neurons

• Running a network

• Looking at the output of the network

• Modifying the state variables of the network directly
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• Defining the network structure by connecting neurons

• Doing a raster plot of the output

• Plotting the membrane potential of an individual neuron

The following Brian classes will be introduced:

• NeuronGroup

• Connection

• SpikeMonitor

• StateMonitor

We will build a Brian program that defines a randomly connected network of integrate and fire neurons and plot its
output.

This tutorial assumes you know:

• The very basics of Python, the import keyword, variables, basic arithmetical expressions, calling functions,
lists

• The simplest leaky integrate and fire neuron model

The best place to start learning Python is the official tutorial:

http://docs.python.org/tut/

Tutorial contents

Tutorial 1a: The simplest Brian program

Importing the Brian module

The first thing to do in any Brian program is to load Brian and the names of its functions and classes. The standard
way to do this is to use the Python from ... import * statement.

from brian import *

Integrate and Fire model

The neuron model we will use in this tutorial is the simplest possible leaky integrate and fire neuron, defined by the
differential equation:

tau dV/dt = -(V-El)

and with a threshold value Vt and reset value Vr.

Parameters

Brian has a system for defining physical quantities (quantities with a physical dimension such as time). The code
below illustrates how to use this system, which (mostly) works just as you’d expect.

tau = 20 * msecond # membrane time constant
Vt = -50 * mvolt # spike threshold
Vr = -60 * mvolt # reset value
El = -60 * mvolt # resting potential (same as the reset)

10 Chapter 3. Getting started
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The built in standard units in Brian consist of all the fundamental SI units like second and metre, along with a selection
of derived SI units such as volt, farad, coulomb. All names are lowercase following the SI standard. In addition, there
are scaled versions of these units using the standard SI prefixes m=1/1000, K=1000, etc.

Neuron model and equations

The simplest way to define a neuron model in Brian is to write a list of the differential equations that define it. For
the moment, we’ll just give the simplest possible example, a single differential equation. You write it in the following
form:

dx/dt = f(x) : unit

where x is the name of the variable, f(x) can be any valid Python expression, and unit is the physical units of the
variable x. In our case we will write:

dV/dt = -(V-El)/tau : volt

to define the variable V with units volt.

To complete the specification of the model, we also define a threshold and reset value and create a group of 40 neurons
with this model.

G = NeuronGroup(N=40, model=’dV/dt = -(V-El)/tau : volt’,
threshold=Vt, reset=Vr)

The statement creates a new object ‘G’ which is an instance of the Brian class NeuronGroup, initialised with the
values in the line above and 40 neurons. In Python, you can call a function or initialise a class using keyword arguments
as well as ordered arguments, so if I defined a function f(x,y) I could call it as f(1,2) or as f(y=2,x=1) and
get the same effect. See the Python tutorial for more information on this.

For the moment, we leave the neurons in this group unconnected to each other, each evolves separately from the others.

Simulation

Finally, we run the simulation for 1 second of simulated time. By default, the simulator uses a timestep dt = 0.1 ms.

run(1 * second)

And that’s it! To see some of the output of this network, go to the next part of the tutorial.

Exercise

The units system of Brian is useful for ensuring that everything is consistent, and that you don’t make hard to find
mistakes in your code by using the wrong units. Try changing the units of one of the parameters and see what happens.

Solution

You should see an error message with a Python traceback (telling you which functions were being called when the
error happened), ending in a line something like:

Brian.units.DimensionMismatchError: The differential equations
are not homogeneous!, dimensions were (m^2 kg s^-3 A^-1)
(m^2 kg s^-4 A^-1)

3.1. Tutorials 11
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Tutorial 1b: Counting spikes

In the previous part of the tutorial we looked at the following:

• Importing the Brian module into Python

• Using quantities with units

• Defining a neuron model by its differential equation

• Creating a group of neurons

• Running a network

In this part, we move on to looking at the output of the network.

The first part of the code is the same.

from brian import *

tau = 20 * msecond # membrane time constant
Vt = -50 * mvolt # spike threshold
Vr = -60 * mvolt # reset value
El = -60 * mvolt # resting potential (same as the reset)

G = NeuronGroup(N=40, model=’dV/dt = -(V-El)/tau : volt’,
threshold=Vt, reset=Vr)

Counting spikes

Now we would like to have some idea of what this network is doing. In Brian, we use monitors to keep track of
the behaviour of the network during the simulation. The simplest monitor of all is the SpikeMonitor, which just
records the spikes from a given NeuronGroup.

M = SpikeMonitor(G)

Results

Now we run the simulation as before:

run(1 * second)

And finally, we print out how many spikes there were:

print M.nspikes

So what’s going on? Why are there 40 spikes? Well, the answer is that the initial value of the membrane potential for
every neuron is 0 mV, which is above the threshold potential of -50 mV and so there is an initial spike at t=0 and then
it resets to -60 mV and stays there, below the threshold potential. In the next part of this tutorial, we’ll make sure there
are some more spikes to see.

Tutorial 1c: Making some activity

In the previous part of the tutorial we found that each neuron was producing only one spike. In this part, we alter the
model so that some more spikes will be generated. What we’ll do is alter the resting potential El so that it is above
threshold, this will ensure that some spikes are generated. The first few lines remain the same:
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from brian import *

tau = 20 * msecond # membrane time constant
Vt = -50 * mvolt # spike threshold
Vr = -60 * mvolt # reset value

But we change the resting potential to -49 mV, just above the spike threshold:

El = -49 * mvolt # resting potential (same as the reset)

And then continue as before:

G = NeuronGroup(N=40, model=’dV/dt = -(V-El)/tau : volt’,
threshold=Vt, reset=Vr)

M = SpikeMonitor(G)

run(1 * second)

print M.nspikes

Running this program gives the output 840. That’s because every neuron starts at the same initial value and proceeds
deterministically, so that each neuron fires at exactly the same time, in total 21 times during the 1s of the run.

In the next part, we’ll introduce a random element into the behaviour of the network.

Exercises

1. Try varying the parameters and seeing how the number of spikes generated varies.

2. Solve the differential equation by hand and compute a formula for the number of spikes generated. Compare
this with the program output and thereby partially verify it. (Hint: each neuron starts at above the threshold and
so fires a spike immediately.)

Solution

Solving the differential equation gives:

V = El + (Vr-El) exp (-t/tau)

Setting V=Vt at time t gives:

t = tau log( (Vr-El) / (Vt-El) )

If the simulator runs for time T, and fires a spike immediately at the beginning of the run it will then generate n spikes,
where:

n = [T/t] + 1

If you have m neurons all doing the same thing, you get nm spikes. This calculation with the parameters above gives:

t = 48.0 ms n = 21 nm = 840

As predicted.

3.1. Tutorials 13
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Tutorial 1d: Introducing randomness

In the previous part of the tutorial, all the neurons start at the same values and proceed deterministically, so they all
spike at exactly the same times. In this part, we introduce some randomness by initialising all the membrane potentials
to uniform random values between the reset and threshold values.

We start as before:

from brian import *

tau = 20 * msecond # membrane time constant
Vt = -50 * mvolt # spike threshold
Vr = -60 * mvolt # reset value
El = -49 * mvolt # resting potential (same as the reset)

G = NeuronGroup(N=40, model=’dV/dt = -(V-El)/tau : volt’,
threshold=Vt, reset=Vr)

M = SpikeMonitor(G)

But before we run the simulation, we set the values of the membrane potentials directly. The notation G.V refers to the
array of values for the variable V in group G. In our case, this is an array of length 40. We set its values by generating
an array of random numbers using Brian’s rand function. The syntax is rand(size) generates an array of length
size consisting of uniformly distributed random numbers in the interval 0, 1.

G.V = Vr + rand(40) * (Vt - Vr)

And now we run the simulation as before.

run(1 * second)

print M.nspikes

But this time we get a varying number of spikes each time we run it, roughly between 800 and 850 spikes. In the next
part of this tutorial, we introduce a bit more interest into this network by connecting the neurons together.

Tutorial 1e: Connecting neurons

In the previous parts of this tutorial, the neurons are still all unconnected. We add in connections here. The model we
use is that when neuron i is connected to neuron j and neuron i fires a spike, then the membrane potential of neuron j
is instantaneously increased by a value psp. We start as before:

from brian import *

tau = 20 * msecond # membrane time constant
Vt = -50 * mvolt # spike threshold
Vr = -60 * mvolt # reset value
El = -49 * mvolt # resting potential (same as the reset)

Now we include a new parameter, the PSP size:

psp = 0.5 * mvolt # postsynaptic potential size

And continue as before:

G = NeuronGroup(N=40, model=’dV/dt = -(V-El)/tau : volt’,
threshold=Vt, reset=Vr)
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Connections

We now proceed to connect these neurons. Firstly, we declare that there is a connection from neurons in G to neurons
in G. For the moment, this is just something that is necessary to do, the reason for doing it this way will become clear
in the next tutorial.

C = Connection(G, G)

Now the interesting part, we make these neurons be randomly connected with probability 0.1 and weight psp. Each
neuron i in G will be connected to each neuron j in G with probability 0.1. The weight of the connection is the amount
that is added to the membrane potential of the target neuron when the source neuron fires a spike.

C.connect_random(sparseness=0.1, weight=psp)

These two previous lines could be done in one line:

C = Connection(G,G,sparseness=0.1,weight=psp)

Now we continue as before:

M = SpikeMonitor(G)

G.V = Vr + rand(40) * (Vt - Vr)

run(1 * second)

print M.nspikes

You can see that the number of spikes has jumped from around 800-850 to around 1000-1200. In the next part of the
tutorial, we’ll look at a way to plot the output of the network.

Exercise

Try varying the parameter psp and see what happens. How large can you make the number of spikes output by the
network? Why?

Solution

The logically maximum number of firings is 400,000 = 40 * 1000 / 0.1, the number of neurons in the network * the
time it runs for / the integration step size (you cannot have more than one spike per step).

In fact, the number of firings is bounded above by 200,000. The reason for this is that the network updates in the
following way:

1. Integration step

2. Find neurons above threshold

3. Propagate spikes

4. Reset neurons which spiked

You can see then that if neuron i has spiked at time t, then it will not spike at time t+dt, even if it receives spikes from
another neuron. Those spikes it receives will be added at step 3 at time t, then reset to Vr at step 4 of time t, then
the thresholding function at time t+dt is applied at step 2, before it has received any subsequent inputs. So the most a
neuron can spike is every other time step.

3.1. Tutorials 15
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Tutorial 1f: Recording spikes

In the previous part of the tutorial, we defined a network with not entirely trivial behaviour, and printed the number of
spikes. In this part, we’ll record every spike that the network generates and display a raster plot of them. We start as
before:

from brian import *

tau = 20 * msecond # membrane time constant
Vt = -50 * mvolt # spike threshold
Vr = -60 * mvolt # reset value
El = -49 * mvolt # resting potential (same as the reset)
psp = 0.5 * mvolt # postsynaptic potential size

G = NeuronGroup(N=40, model=’dV/dt = -(V-El)/tau : volt’,
threshold=Vt, reset=Vr)

C = Connection(G, G)
C.connect_random(sparseness=0.1, weight=psp)

M = SpikeMonitor(G)

G.V = Vr + rand(40) * (Vt - Vr)

run(1 * second)

print M.nspikes

Having run the network, we simply use the raster_plot() function provided by Brian. After creating plots, we
have to use the show() function to display them. This function is from the PyLab module that Brian uses for its built
in plotting routines.

raster_plot()
show()
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As you can see, despite having introduced some randomness into our network, the output is very regular indeed. In
the next part we introduce one more way to plot the output of a network.

Tutorial 1g: Recording membrane potentials

In the previous part of this tutorial, we plotted a raster plot of the firing times of the network. In this tutorial, we
introduce a way to record the value of the membrane potential for a neuron during the simulation, and plot it. We
continue as before:

from brian import *

tau = 20 * msecond # membrane time constant
Vt = -50 * mvolt # spike threshold
Vr = -60 * mvolt # reset value
El = -49 * mvolt # resting potential (same as the reset)
psp = 0.5 * mvolt # postsynaptic potential size

G = NeuronGroup(N=40, model=’dV/dt = -(V-El)/tau : volt’,
threshold=Vt, reset=Vr)

C = Connection(G, G)
C.connect_random(sparseness=0.1, weight=psp)

This time we won’t record the spikes.

3.1. Tutorials 17
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Recording states

Now we introduce a second type of monitor, the StateMonitor. The first argument is the group to monitor, and
the second is the state variable to monitor. The keyword record can be an integer, list or the value True. If it is an
integer i, the monitor will record the state of the variable for neuron i. If it’s a list of integers, it will record the states
for each neuron in the list. If it’s set to True it will record for all the neurons in the group.

M = StateMonitor(G, ’V’, record=0)

And then we continue as before:

G.V = Vr + rand(40) * (Vt - Vr)

But this time we run it for a shorter time so we can look at the output in more detail:

run(200 * msecond)

Having run the simulation, we plot the results using the plot command from PyLab which has the same syntax as the
Matlab plot‘ command, i.e. plot(xvals,yvals,...). The StateMonitor monitors the times at which it
monitored a value in the array M.times, and the values in the array M[0]. The notation M[i] means the array of
values of the monitored state variable for neuron i.

In the following lines, we scale the times so that they’re measured in ms and the values so that they’re measured in
mV. We also label the plot using PyLab’s xlabel, ylabel and title functions, which again mimic the Matlab
equivalents.

plot(M.times / ms, M[0] / mV)
xlabel(’Time (in ms)’)
ylabel(’Membrane potential (in mV)’)
title(’Membrane potential for neuron 0’)
show()
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You can clearly see the leaky integration exponential decay toward the resting potential, as well as the jumps when a
spike was received.

3.1.3 Tutorial 2: Connections

In this tutorial, we will cover in more detail the concept of a Connection in Brian.

Tutorial contents

Tutorial 2a: The concept of a Connection

The network

In this first part, we’ll build a network consisting of three neurons. The first two neurons will be under direct control
and have no equations defining them, they’ll just produce spikes which will feed into the third neuron. This third
neuron has two different state variables, called Va and Vb. The first two neurons will be connected to the third neuron,
but a spike arriving at the third neuron will be treated differently according to whether it came from the first or second
neuron (which you can consider as meaning that the first two neurons have different types of synapses on to the third
neuron).

The program starts as follows.

from brian import *

tau_a = 1 * ms
tau_b = 10 * ms
Vt = 10 * mV
Vr = 0 * mV

Differential equations

This time, we will have multiple differential equations. We will use the Equations object, although you could
equally pass the multi-line string defining the differential equations directly when initialising the NeuronGroup
object (see the next part of the tutorial for an example of this).

eqs = Equations(’’’
dVa/dt = -Va/tau_a : volt
dVb/dt = -Vb/tau_b : volt
’’’)

So far, we have defined a model neuron with two state variables, Va and Vb, which both decay exponentially towards
0, but with different time constants tau_a and tau_b. This is just so that you can see the difference between them
more clearly in the plot later on.

SpikeGeneratorGroup

Now we introduce the SpikeGeneratorGroup class. This is a group of neurons without a model, which just
produces spikes at the times that you specify. You create a group like this by writing:

G = SpikeGeneratorGroup(N,spiketimes)
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where N is the number of neurons in the group, and spiketimes is a list of pairs (i,t) indicating that neuron i
should fire at time t. In fact, spiketimes can be any ‘iterable container’ or ‘generator’, but we don’t cover that
here (see the detailed documentation for SpikeGeneratorGroup).

In our case, we want to create a group with two neurons, the first of which (neuron 0) fires at times 1 ms and 4 ms, and
the second of which (neuron 1) fires at times 2 ms and 3 ms. The list of spiketimes then is:

spiketimes = [(0, 1 * ms), (0, 4 * ms),
(1, 2 * ms), (1, 3 * ms)]

and we create the group as follows:

G1 = SpikeGeneratorGroup(2, spiketimes)

Now we create a second group, with one neuron, according to the model we defined earlier.

G2 = NeuronGroup(N=1, model=eqs, threshold=Vt, reset=Vr)

Connections

In Brian, a Connection from one NeuronGroup to another is defined by writing:

C = Connection(G,H,state)

Here G is the source group, H is the target group, and state is the name of the target state variable. When a neuron i
in G fires, Brian finds all the neurons j in H that i in G is connected to, and adds the amount C[i,j] to the specified
state variable of neuron j in H. Here C[i,j] is the (i,j)th entry of the connection matrix of C (which is initially all
zero).

To start with, we create two connections from the group of two directly controlled neurons to the group of one neuron
with the differential equations. The first connection has the target state Va and the second has the target state Vb.

C1 = Connection(G1, G2, ’Va’)
C2 = Connection(G1, G2, ’Vb’)

So far, this only declares our intention to connect neurons in group G1 to neurons in group G2, because the connection
matrix is initially all zeros. Now, with connection C1 we connect neuron 0 in group G1 to neuron 0 in group G2, with
weight 3 mV. This means that when neuron 0 in group G1 fires, the state variable Va of the neuron in group G2 will
be increased by 6 mV. Then we use connection C2 to connection neuron 1 in group G1 to neuron 0 in group G2, this
time with weight 3 mV.

C1[0, 0] = 6 * mV
C2[1, 0] = 3 * mV

The net effect of this is that when neuron 0 of G1 fires, Va for the neuron in G2 will increase 6 mV, and when neuron
1 of G1 fires, Vb for the neuron in G2 will increase 3 mV.

Now we set up monitors to record the activity of the network, run it and plot it.

Ma = StateMonitor(G2, ’Va’, record=True)
Mb = StateMonitor(G2, ’Vb’, record=True)

run(10 * ms)

plot(Ma.times, Ma[0])
plot(Mb.times, Mb[0])
show()
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The two plots show the state variables Va and Vb for the single neuron in group G2. Va is shown in blue, and Vb in
green. According to the differential equations, Va decays much faster than Vb (time constant 1 ms rather than 10 ms),
but we have set it up (through the connection strengths) that an incoming spike from neuron 0 of G1 causes a large
increase of 6 mV to Va, whereas a spike from neuron 1 of G1 causes a smaller increase of 3 mV to Vb. The value
for Va then jumps at times 1 ms and 4 ms, when we defined neuron 0 of G1 to fire, and decays almost back to rest
in between. The value for Vb jumps at times 2 ms and 3 ms, and because the times are closer together and the time
constant is longer, they add together.

In the next part of this tutorial, we’ll see how to use this system to do something useful.

Exercises

1. Try playing with the parameters tau_a, tau_b and the connection strengths, C1[0,0] and C2[0,1]. Try
changing the list of spike times.

2. In this part of the tutorial, the states Va and Vb are independent of one another. Try rewriting the differential
equations so that they’re not independent and play around with that.

3. Write a network with inhibitory and excitatory neurons. Hint: you only need one connection.

4. Write a network with inhibitory and excitatory neurons whose actions have different time constants (for example,
excitatory neurons have a slower effect than inhibitory ones).

Solutions

3. Simple write C[i,j]=-3*mV to make the connection from neuron i to neuron j inhibitory.

4. See the next part of this tutorial.
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Tutorial 2b: Excitatory and inhibitory currents

In this tutorial, we use multiple connections to solve a real problem, how to implement two types of synapses with
excitatory and inhibitory currents with different time constants.

The scheme

The scheme we implement is the following diffential equations:

taum dV/dt = -V + ge - gi
taue dge/dt = -ge
taui dgi/dt = -gi

An excitatory neuron connects to state ge, and an inhibitory neuron connects to state gi. When an excitatory spike
arrives, ge instantaneously increases, then decays exponentially. Consequently, V will initially but continuously rise
and then fall. Solving these equations, if V(0)=0, ge(0)=g0 corresponding to an excitatory spike arriving at time 0, and
gi(0)=0 then:

gi = 0
ge = g0 exp(-t/taue)
V = (exp(-t/taum) - exp(-t/taue)) taue g0 / (taum-taue)

We use a very short time constant for the excitatory currents, a longer one for the inhibitory currents, and an even
longer one for the membrane potential.

from brian import *

taum = 20 * ms
taue = 1 * ms
taui = 10 * ms
Vt = 10 * mV
Vr = 0 * mV

eqs = Equations(’’’
dV/dt = (-V+ge-gi)/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
’’’)

Connections

As before, we’ll have a group of two neurons under direct control, the first of which will be excitatory this time, and
the second will be inhibitory. To demonstrate the effect, we’ll have two excitatory spikes reasonably close together,
followed by an inhibitory spike later on, and then shortly after that two excitatory spikes close together.

spiketimes = [(0, 1 * ms), (0, 10 * ms),
(1, 40 * ms),
(0, 50 * ms), (0, 55 * ms)]

G1 = SpikeGeneratorGroup(2, spiketimes)
G2 = NeuronGroup(N=1, model=eqs, threshold=Vt, reset=Vr)

C1 = Connection(G1, G2, ’ge’)
C2 = Connection(G1, G2, ’gi’)
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The weights are the same - when we increase ge the effect on V is excitatory and when we increase gi the effect on
V is inhibitory.

C1[0, 0] = 3 * mV
C2[1, 0] = 3 * mV

We set up monitors and run as normal.

Mv = StateMonitor(G2, ’V’, record=True)
Mge = StateMonitor(G2, ’ge’, record=True)
Mgi = StateMonitor(G2, ’gi’, record=True)

run(100 * ms)

This time we do something a little bit different when plotting it. We want a plot with two subplots, the top one will
show V, and the bottom one will show both ge and gi. We use the subplot command from pylab which mimics
the same command from Matlab.

figure()
subplot(211)
plot(Mv.times, Mv[0])
subplot(212)
plot(Mge.times, Mge[0])
plot(Mgi.times, Mgi[0])
show()

The top figure shows the voltage trace, and the bottom figure shows ge in blue and gi in green. You can see that
although the inhibitory and excitatory weights are the same, the inhibitory current is much more powerful. This is
because the effect of ge or gi on V is related to the integral of the differential equation for those variables, and gi
decays much more slowly than ge. Thus the size of the negative deflection at 40 ms is much bigger than the excitatory
ones, and even the double excitatory spike after the inhibitory one can’t cancel it out.
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In the next part of this tutorial, we set up our first serious network, with 4000 neurons, excitatory and inhibitory.

Exercises

1. Try changing the parameters and spike times to get a feel for how it works.

2. Try an equivalent implementation with the equation taum dV/dt = -V+ge+gi

3. Verify that the differential equation has been solved correctly.

Solutions

Solution for 2:

Simply use the line C2[1,0] = -3*mV to get the same effect.

Solution for 3:

First, set up the situation we described at the top for which we already know the solution of the differential equations,
by changing the spike times as follows:

spiketimes = [(0,0*ms)]

Now we compute what the values ought to be as follows:

t = Mv.times
Vpredicted = (exp(-t/taum) - exp(-t/taue))*taue*(3*mV) / (taum-taue)

Now we can compute the difference between the predicted and actual values:

Vdiff = abs(Vpredicted - Mv[0])

This should be zero:

print max(Vdiff)

Sure enough, it’s as close as you can expect on a computer. When I run this it gives me the value 1.3 aV, which is 1.3
* 10^-18 volts, i.e. effectively zero given the finite precision of the calculations involved.

Tutorial 2c: The CUBA network

In this part of the tutorial, we set up our first serious network that actually does something. It implements the CUBA
network, Benchmark 2 from:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph,
Carnevale, Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermen-
trout, Djurfeldt, Lansner, Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of
Computational Neuroscience

This is a network of 4000 neurons, of which 3200 excitatory, and 800 inhibitory, with exponential synaptic currents.
The neurons are randomly connected with probability 0.02.

from brian import *

taum = 20 * ms # membrane time constant
taue = 5 * ms # excitatory synaptic time constant
taui = 10 * ms # inhibitory synaptic time constant
Vt = -50 * mV # spike threshold
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Vr = -60 * mV # reset value
El = -49 * mV # resting potential
we = (60 * 0.27 / 10) * mV # excitatory synaptic weight
wi = (20 * 4.5 / 10) * mV # inhibitory synaptic weight

eqs = Equations(’’’
dV/dt = (ge-gi-(V-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
’’’)

So far, this has been pretty similar to the previous part, the only difference is we have a couple more parameters, and
we’ve added a resting potential El into the equation for V.

Now we make lots of neurons:

G = NeuronGroup(4000, model=eqs, threshold=Vt, reset=Vr)

Next, we divide them into subgroups. The subgroup() method of a NeuronGroup returns a new NeuronGroup
that can be used in exactly the same way as its parent group. At the moment, the subgrouping mechanism can only
be used to create contiguous groups of neurons (so you can’t have a subgroup consisting of neurons 0-100 and also
200-300 say). We designate the first 3200 neurons as Ge and the second 800 as Gi, these will be the excitatory and
inhibitory neurons.

Ge = G.subgroup(3200) # Excitatory neurons
Gi = G.subgroup(800) # Inhibitory neurons

Now we define the connections. As in the previous part of the tutorial, ge is the excitatory current and gi is the
inhibitory one. Ce says that an excitatory neuron can synapse onto any neuron in G, be it excitatory or inhibitory.
Similarly for inhibitory neurons. We also randomly connect Ge and Gi to the whole of G with probability 0.02 and
the weights given in the list of parameters at the top.

Ce = Connection(Ge, G, ’ge’, sparseness=0.02, weight=we)
Ci = Connection(Gi, G, ’gi’, sparseness=0.02, weight=wi)

Set up some monitors as usual. The line record=0 in the StateMonitor declarations indicates that we only want
to record the activity of neuron 0. This saves time and memory.

M = SpikeMonitor(G)
MV = StateMonitor(G, ’V’, record=0)
Mge = StateMonitor(G, ’ge’, record=0)
Mgi = StateMonitor(G, ’gi’, record=0)

And in order to start the network off in a somewhat more realistic state, we initialise the membrane potentials uniformly
randomly between the reset and the threshold.

G.V = Vr + (Vt - Vr) * rand(len(G))

Now we run.

run(500 * ms)

And finally we plot the results. Just for fun, we do a rather more complicated plot than we’ve been doing so far, with
three subplots. The upper one is the raster plot of the whole network, and the lower two are the values of V (on the left)
and ge and gi (on the right) for the neuron we recorded from. See the PyLab documentation for an explanation of the
plotting functions, but note that the raster_plot() keyword newfigure=False instructs the (Brian) function
raster_plot() not to create a new figure (so that it can be placed as a subplot of a larger figure).
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subplot(211)
raster_plot(M, title=’The CUBA network’, newfigure=False)
subplot(223)
plot(MV.times / ms, MV[0] / mV)
xlabel(’Time (ms)’)
ylabel(’V (mV)’)
subplot(224)
plot(Mge.times / ms, Mge[0] / mV)
plot(Mgi.times / ms, Mgi[0] / mV)
xlabel(’Time (ms)’)
ylabel(’ge and gi (mV)’)
legend((’ge’, ’gi’), ’upper right’)
show()

3.2 Examples

These examples cover some basic topics in writing Brian scripts in Python. The complete source code for the examples
is available in the examples folder in the extras package.

3.2.1 audition

Example: licklider (audition)

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

Romain Brette

26 Chapter 3. Getting started



Brian Documentation, Release 1.4.1

from brian import *

defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20 * ms # 50 Hz
tau_ear = 1 * ms
sigma_ear = .1
eqs_ear = ’’’
dx/dt=(sound-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1
sound=5*sin(2*pi*frequency*t)**3 : 1 # nonlinear distorsion
#sound=5*(sin(4*pi*frequency*t)+.5*sin(6*pi*frequency*t)) : 1 # missing fundamental
frequency=(200+200*t*Hz)*Hz : Hz # increasing pitch
’’’
receptors = NeuronGroup(2, model=eqs_ear, threshold=1, reset=0, refractory=2 * ms)
traces = StateMonitor(receptors, ’x’, record=True)
sound = StateMonitor(receptors, ’sound’, record=0)

# Coincidence detectors
min_freq = 50 * Hz
max_freq = 1000 * Hz
N = 300
tau = 1 * ms
sigma = .1
eqs_neurons = ’’’
dv/dt=-v/tau+sigma*(2./tau)**.5*xi : 1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0)
synapses = Connection(receptors, neurons, ’v’, structure=’dense’, max_delay=1.1 * max_delay, delay=True)
synapses.connect_full(receptors, neurons, weight=.5)
synapses.delay[1, :] = 1. / exp(linspace(log(min_freq / Hz), log(max_freq / Hz), N))
spikes = SpikeMonitor(neurons)

run(500 * ms)
raster_plot(spikes)
ylabel(’Frequency’)
yticks([0, 99, 199, 299], array(1. / synapses.delay.todense()[1, [0, 99, 199, 299]], dtype=int))
show()

Example: jeffress (audition)

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place
code using delay lines (each neuron receives input from both ears, with different delays).

Romain Brette

from brian import *

defaultclock.dt = .02 * ms
dt = defaultclock.dt

# Sound
sound = TimedArray(10 * randn(50000)) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300 * metre / second
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interaural_distance = 20 * cm # big head!
max_delay = interaural_distance / sound_speed
print "Maximum interaural delay:", max_delay
angular_speed = 2 * pi * radian / second # 1 turn/second
tau_ear = 1 * ms
sigma_ear = .1
eqs_ears = ’’’
dx/dt=(sound(t-delay)-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1
delay=distance*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt=angular_speed : radian
’’’
ears = NeuronGroup(2, model=eqs_ears, threshold=1, reset=0, refractory=2.5 * ms)
ears.distance = [-.5 * max_delay, .5 * max_delay]
traces = StateMonitor(ears, ’x’, record=True)

# Coincidence detectors
N = 300
tau = 1 * ms
sigma = .1
eqs_neurons = ’’’
dv/dt=-v/tau+sigma*(2./tau)**.5*xi : 1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0)
synapses = Connection(ears, neurons, ’v’, structure=’dense’, delay=True, max_delay=1.1 * max_delay)
synapses.connect_full(ears, neurons, weight=.5)
synapses.delay[0, :] = linspace(0 * ms, 1.1 * max_delay, N)
synapses.delay[1, :] = linspace(0 * ms, 1.1 * max_delay, N)[::-1]
spikes = SpikeMonitor(neurons)

run(1000 * ms)
raster_plot(spikes)
show()

Example: filterbank (audition)

An auditory filterbank implemented with Poisson neurons

The input sound has a missing fundamental (only harmonics 2 and 3)

from brian import *

defaultclock.dt = .01 * ms

N = 1500
tau = 1 * ms # Decay time constant of filters = 2*tau
freq = linspace(100 * Hz, 2000 * Hz, N) # characteristic frequencies
f_stimulus = 500 * Hz # stimulus frequency
gain = 500 * Hz

eqs = ’’’
dv/dt=(-a*w-v+I)/tau : Hz
dw/dt=(v-w)/tau : Hz # e.g. linearized potassium channel with conductance a
a : 1
I = gain*(sin(4*pi*f_stimulus*t)+sin(6*pi*f_stimulus*t)) : Hz
’’’
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neurones = NeuronGroup(N, model=eqs, threshold=PoissonThreshold())
neurones.a = (2 * pi * freq * tau) ** 2

spikes = SpikeMonitor(neurones)
counter = SpikeCounter(neurones)
run(100 * ms)

subplot(121)
CF = array([freq[i] for i, _ in spikes.spikes])
timings = array([t for _, t in spikes.spikes])
plot(timings / ms, CF, ’.’)
xlabel(’Time (ms)’)
ylabel(’Characteristic frequency (Hz)’)
subplot(122)
plot(counter.count / (300 * ms), freq)
xlabel(’Firing rate (Hz)’)
show()

3.2.2 multiprocessing

Example: multiple_runs_with_gui (multiprocessing)

A complicated example of using multiprocessing for multiple runs of a simulation with different parameters, using a
GUI to monitor and control the runs.

This example features:

• An indefinite number of runs, with a set of parameters for each run generated at random for each run.

• A plot of the output of all the runs updated as soon as each run is completed.

• A GUI showing how long each process has been running for and how long until it completes, and with a button
allowing you to terminate the runs.

A simpler example is in examples/multiprocessing/multiple_runs_simple.py.

# We use Tk as the backend for the GUI and matplotlib so as to avoid any
# threading conflicts
import matplotlib
matplotlib.use(’TkAgg’)

from brian import *
import Tkinter, time, multiprocessing, os
from brian.utils.progressreporting import make_text_report
from Queue import Empty as QueueEmpty

class SimulationController(Tkinter.Tk):
’’’
GUI, uses Tkinter and features a progress bar for each process, and a callback
function for when the terminate button is clicked.
’’’
def __init__(self, processes, terminator, width=600):

Tkinter.Tk.__init__(self, None)
self.parent = None
self.grid()
button = Tkinter.Button(self, text=’Terminate simulation’,

command=terminator)
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button.grid(column=0, row=0)
self.pb_width = width
self.progressbars = []
for i in xrange(processes):

can = Tkinter.Canvas(self, width=width, height=30)
can.grid(column=0, row=1 + i)
can.create_rectangle(0, 0, width, 30, fill=’#aaaaaa’)
r = can.create_rectangle(0, 0, 0, 30, fill=’#ffaaaa’, width=0)
t = can.create_text(width / 2, 15, text=’’)
self.progressbars.append((can, r, t))

self.results_text = Tkinter.Label(self, text=’Computed 0 results, time taken: 0s’)
self.results_text.grid(column=0, row=processes + 1)
self.title(’Simulation control’)

def update_results(self, elapsed, complete):
’’’
Method to update the total number of results computed and the amount of time taken.
’’’
self.results_text.config(text=’Computed ’ + str(complete) + ’, time taken: ’ + str(int(elapsed)) + ’s’)
self.update()

def update_process(self, i, elapsed, complete, msg):
’’’
Method to update the status of a given process.
’’’
can, r, t = self.progressbars[i]
can.itemconfigure(t, text=’Process ’ + str(i) + ’: ’ + make_text_report(elapsed, complete) + ’: ’ + msg)
can.coords(r, 0, 0, int(self.pb_width * complete), 30)
self.update()

def sim_mainloop(pool, results, message_queue):
’’’
Monitors results of a simulation as they arrive

pool is the multiprocessing.Pool that the processes are running in,
results is the AsyncResult object returned by Pool.imap_unordered which
returns simulation results asynchronously as and when they are ready,
and message_queue is a multiprocessing.Queue used to communicate between
child processes and the server process. In this case, we use this Queue to
send messages about the percent complete and time elapsed for each run.
’’’
# We use this to enumerate the processes, mapping their process IDs to an int
# in the range 0:num_processes.
pid_to_id = dict((pid, i) for i, pid in enumerate([p.pid for p in pool._pool]))
num_processes = len(pid_to_id)
start = time.time()
stoprunningsim = [False]
# This function terminates all the pool’s child processes, it is used as
# the callback function called when the terminate button on the GUI is clicked.
def terminate_sim():

pool.terminate()
stoprunningsim[0] = True

controller = SimulationController(num_processes, terminate_sim)
for i in range(num_processes):

controller.update_process(i, 0, 0, ’no info yet’)
i = 0
while True:

try:
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# If there is a new result (the 0.1 means wait 0.1 seconds for a
# result before giving up) then this try clause will execute, otherwise
# a TimeoutError will occur and the except clause afterwards will
# execute.
weight, numspikes = results.next(0.1)
# if we reach here, we have a result to plot, so we plot it and
# update the GUI
plot_result(weight, numspikes)
i = i + 1
controller.update_results(time.time() - start, i)

except multiprocessing.TimeoutError:
# if we’re still waiting for a new result, we can process events in
# the message_queue and update the GUI if there are any.
while not message_queue.empty():

try:
# messages here are of the form: (pid, elapsed, complete)
# where pid is the process ID of the child process, elapsed
# is the amount of time elapsed, and complete is the
# fraction of the run completed. See function how_many_spikes
# to see where these messages come from.
pid, elapsed, complete = message_queue.get_nowait()
controller.update_process(pid_to_id[pid], elapsed, complete, ’’)

except QueueEmpty:
break

controller.update()
if stoprunningsim[0]:

print ’Terminated simulation processes’
break

controller.destroy()

def plot_result(weight, numspikes):
plot([weight], [numspikes], ’.’, color=(0, 0, 0.5))
axis(’tight’)
draw() # this forces matplotlib to redraw

# Note that how_many_spikes only takes one argument, which is a tuple of
# its actual arguments. The reason for this is that Pool.imap_unordered can only
# pass a single argument to the function its applied to, but that argument can
# be a tuple...
def how_many_spikes((excitatory_weight, message_queue)):

reinit_default_clock()
clear(True)

eqs = ’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’
P = NeuronGroup(4000, eqs, threshold= -50 * mV, reset= -60 * mV)
P.v = -60 * mV + 10 * mV * rand(len(P))
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ’ge’)
Ci = Connection(Pi, P, ’gi’)
Ce.connect_random(Pe, P, 0.02, weight=excitatory_weight)
Ci.connect_random(Pi, P, 0.02, weight= -9 * mV)
M = SpikeMonitor(P)
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# This reporter function is called every second, and it sends a message to
# the server process updating the status of the current run.
def reporter(elapsed, complete):

message_queue.put((os.getpid(), elapsed, complete))

run(4000 * ms, report=reporter, report_period=1 * second)

return (excitatory_weight, M.nspikes)

if __name__ == ’__main__’:
numprocesses = None # number of processes to use, set to None to have one per CPU
# We have to use a Queue from the Manager to send messages from client
# processes to the server process
manager = multiprocessing.Manager()
message_queue = manager.Queue()
pool = multiprocessing.Pool(processes=numprocesses)
# This generator function repeatedly generates random sets of parameters
# to pass to the how_many_spikes function
def args():

while True:
weight = rand()*3.5 * mV
yield (weight, message_queue)

# imap_unordered returns an AsyncResult object which returns results as
# and when they are ready, we pass this results object which is returned
# immediately to the sim_mainloop function which monitors this, updates the
# GUI and plots the results as they come in.
results = pool.imap_unordered(how_many_spikes, args())
ion() # this puts matplotlib into interactive mode to plot as we go
sim_mainloop(pool, results, message_queue)

Example: multiple_runs_simple (multiprocessing)

Example of using Python multiprocessing module to distribute simulations over multiple processors.

The general procedure for using multiprocessing is to define and run a network inside a function, and then use multi-
processing.Pool.map to call the function with multiple parameter values. Note that on Windows, any code that should
only run once should be placed inside an if __name__==’__main__’ block.

from brian import *
import multiprocessing

# This is the function that we want to compute for various different parameters
def how_many_spikes(excitatory_weight):

# These two lines reset the clock to 0 and clear any remaining data so that
# memory use doesn’t build up over multiple runs.
reinit_default_clock()
clear(True)
eqs = ’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’
P = NeuronGroup(4000, eqs, threshold= -50 * mV, reset= -60 * mV)
P.v = -60 * mV + 10 * mV * rand(len(P))
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
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Ce = Connection(Pe, P, ’ge’)
Ci = Connection(Pi, P, ’gi’)
Ce.connect_random(Pe, P, 0.02, weight=excitatory_weight)
Ci.connect_random(Pi, P, 0.02, weight= -9 * mV)
M = SpikeMonitor(P)
run(100 * ms)
return M.nspikes

if __name__ == ’__main__’:
# Note that on Windows platforms, all code that is executed rather than
# just defining functions and classes has to be in the if __name__==’__main__’
# block, otherwise it will be executed by each process that starts. This
# isn’t a problem on Linux.
pool = multiprocessing.Pool() # uses num_cpu processes by default
weights = linspace(0, 3.5, 100) * mV
args = [w * volt for w in weights]
results = pool.map(how_many_spikes, args) # launches multiple processes
plot(weights, results, ’.’)
show()

Example: taskfarm (multiprocessing)

Uses the run_tasks() function to run a task on multiple CPUs and save the results to a DataManager object.

from brian import *
from brian.tools.datamanager import *
from brian.tools.taskfarm import *

def find_rate(k, report):
eqs = ’’’
dV/dt = (k-V)/(10*ms) : 1
’’’
G = NeuronGroup(1000, eqs, reset=0, threshold=1)
M = SpikeCounter(G)
run(30*second, report=report)
return (k, mean(M.count)/30)

if __name__==’__main__’:
N = 20
dataman = DataManager(’taskfarmexample’)
if dataman.itemcount()<N:

M = N-dataman.itemcount()
run_tasks(dataman, find_rate, rand(M)*19+1)

X, Y = zip(*dataman.values())
plot(X, Y, ’.’)
xlabel(’k’)
ylabel(’Firing rate (Hz)’)
show()

3.2.3 plasticity

Example: short_term_plasticity2 (plasticity)

Network (CUBA) with short-term synaptic plasticity for excitatory synapses (Depressing at long timescales, facilitat-
ing at short timescales)
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from brian import *
from time import time

eqs = ’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’

P = NeuronGroup(4000, model=eqs, threshold= -50 * mV, reset= -60 * mV)
P.v = -60 * mV + rand(4000) * 10 * mV
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ’ge’, weight=1.62 * mV, sparseness=.02)
Ci = Connection(Pi, P, ’gi’, weight= -9 * mV, sparseness=.02)
stp = STP(Ce, taud=200 * ms, tauf=20 * ms, U=.2)
M = SpikeMonitor(P)
rate = PopulationRateMonitor(P)
t1 = time()
run(1 * second)
t2 = time()
print "Simulation time:", t2 - t1, "s"
print M.nspikes, "spikes"
subplot(211)
raster_plot(M)
subplot(212)
plot(rate.times / ms, rate.smooth_rate(5 * ms))
show()

Example: STDP1 (plasticity)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

This simulation takes a long time!

from brian import *
from time import time

N = 1000
taum = 10 * ms
tau_pre = 20 * ms
tau_post = tau_pre
Ee = 0 * mV
vt = -54 * mV
vr = -60 * mV
El = -74 * mV
taue = 5 * ms
F = 15 * Hz
gmax = .01
dA_pre = .01
dA_post = -dA_pre * tau_pre / tau_post * 1.05

eqs_neurons = ’’’
dv/dt=(ge*(Ee-vr)+El-v)/taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1
’’’
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input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, model=eqs_neurons, threshold=vt, reset=vr)
synapses = Connection(input, neurons, ’ge’, weight=rand(len(input), len(neurons)) * gmax)
neurons.v = vr

#stdp=ExponentialSTDP(synapses,tau_pre,tau_post,dA_pre,dA_post,wmax=gmax)
## Explicit STDP rule
eqs_stdp = ’’’
dA_pre/dt=-A_pre/tau_pre : 1
dA_post/dt=-A_post/tau_post : 1
’’’
dA_post *= gmax
dA_pre *= gmax
stdp = STDP(synapses, eqs=eqs_stdp, pre=’A_pre+=dA_pre;w+=A_post’,

post=’A_post+=dA_post;w+=A_pre’, wmax=gmax)

rate = PopulationRateMonitor(neurons)

start_time = time()
run(100 * second, report=’text’)
print "Simulation time:", time() - start_time

subplot(311)
plot(rate.times / second, rate.smooth_rate(100 * ms))
subplot(312)
plot(synapses.W.todense() / gmax, ’.’)
subplot(313)
hist(synapses.W.todense() / gmax, 20)
show()

Example: STDP2 (plasticity)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000), Song and Abbott (2001) and van
Rossum et al (2000).

This simulation takes a long time!

from brian import *
from time import time

N = 1000
taum = 10 * ms
tau_pre = 20 * ms
tau_post = tau_pre
Ee = 0 * mV
vt = -54 * mV
vr = -60 * mV
El = -74 * mV
taue = 5 * ms
gmax = 0.01
F = 15 * Hz
dA_pre = .01
dA_post = -dA_pre * tau_pre / tau_post * 2.5

eqs_neurons = ’’’
dv/dt=(ge*(Ee-vr)+El-v)/taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1
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’’’

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, model=eqs_neurons, threshold=vt, reset=vr)
synapses = Connection(input, neurons, ’ge’, weight=rand(len(input), len(neurons)) * gmax,

structure=’dense’)
neurons.v = vr

stdp = ExponentialSTDP(synapses, tau_pre, tau_post, dA_pre, dA_post, wmax=gmax, update=’mixed’)

rate = PopulationRateMonitor(neurons)

start_time = time()
run(100 * second, report=’text’)
print "Simulation time:", time() - start_time

subplot(311)
plot(rate.times / second, rate.smooth_rate(100 * ms))
subplot(312)
plot(synapses.W.todense() / gmax, ’.’)
subplot(313)
hist(synapses.W.todense() / gmax, 20)
show()

Example: short_term_plasticity (plasticity)

Example with short term plasticity model Neurons with regular inputs and depressing synapses

from brian import *

tau_e = 3 * ms
taum = 10 * ms
A_SE = 250 * pA
Rm = 100 * Mohm
N = 10

eqs = ’’’
dx/dt=rate : 1
rate : Hz
’’’

input = NeuronGroup(N, model=eqs, threshold=1., reset=0)
input.rate = linspace(5 * Hz, 30 * Hz, N)

eqs_neuron = ’’’
dv/dt=(Rm*i-v)/taum:volt
di/dt=-i/tau_e:amp
’’’
neuron = NeuronGroup(N, model=eqs_neuron)

C = Connection(input, neuron, ’i’)
C.connect_one_to_one(weight=A_SE)
stp = STP(C, taud=1 * ms, tauf=100 * ms, U=.1) # facilitation
#stp=STP(C,taud=100*ms,tauf=10*ms,U=.6) # depression
trace = StateMonitor(neuron, ’v’, record=[0, N - 1])

run(1000 * ms)
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subplot(211)
plot(trace.times / ms, trace[0] / mV)
title(’Vm’)
subplot(212)
plot(trace.times / ms, trace[N - 1] / mV)
title(’Vm’)
show()

3.2.4 hears

Example: sounds (hears)

Example of basic use and manipulation of sounds with Brian hears.

from brian import *
from brian.hears import *

sound1 = tone(1*kHz, 1*second)
sound2 = whitenoise(1*second)

sound = sound1+sound2
sound = sound.ramp()

# Comment this line out if you don’t have pygame installed
sound.play()

# The first 20ms of the sound
startsound = sound[:20*ms]

subplot(121)
plot(startsound.times, startsound)
subplot(122)
sound.spectrogram()
show()

Example: ircam_hrtf (hears)

Example showing the use of HRTFs in Brian hears. Note that you will need to download the IRCAM_LISTEN
database.

from brian import *
from brian.hears import *
# Load database
hrtfdb = IRCAM_LISTEN(r’F:\HRTF\IRCAM’)
hrtfset = hrtfdb.load_subject(1002)
# Select only the horizontal plane
hrtfset = hrtfset.subset(lambda elev: elev==0)
# Set up a filterbank
sound = whitenoise(10*ms)
fb = hrtfset.filterbank(sound)
# Extract the filtered response and plot
img = fb.process().T
img_left = img[:img.shape[0]/2, :]
img_right = img[img.shape[0]/2:, :]
subplot(121)
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imshow(img_left, origin=’lower left’, aspect=’auto’,
extent=(0, sound.duration/ms, 0, 360))

xlabel(’Time (ms)’)
ylabel(’Azimuth’)
title(’Left ear’)
subplot(122)
imshow(img_right, origin=’lower left’, aspect=’auto’,

extent=(0, sound.duration/ms, 0, 360))
xlabel(’Time (ms)’)
ylabel(’Azimuth’)
title(’Right ear’)
show()

Example: butterworth (hears)

Example of the use of the class Butterworth available in the library. In this example, a white noise is filtered
by a bank of butterworth bandpass filters and lowpass filters which are different for every channels. The centre or
cutoff frequency of the filters are linearly taken between 100kHz and 1000kHz and its bandwidth frequency increases
linearly with frequency.

from brian import *
from brian.hears import *

level = 50*dB # level of the input sound in rms dB SPL
sound = whitenoise(100*ms).ramp()
sound = sound.atlevel(level)
order = 2 #order of the filters

#### example of a bank of bandpass filter ################
nchannels = 50
center_frequencies = linspace(100*Hz, 1000*Hz, nchannels)
bw = linspace(50*Hz, 300*Hz, nchannels) # bandwidth of the filters
#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
fc = vstack((center_frequencies-bw/2, center_frequencies+bw/2))

filterbank = Butterworth(sound, nchannels, order, fc, ’bandpass’)

filterbank_mon = filterbank.process()

figure()
subplot(211)
imshow(flipud(filterbank_mon.T), aspect=’auto’)

### example of a bank of lowpass filter ################
nchannels = 50
cutoff_frequencies = linspace(200*Hz, 1000*Hz, nchannels)

filterbank = Butterworth(sound, nchannels, order, cutoff_frequencies, ’low’)

filterbank_mon = filterbank.process()

subplot(212)
imshow(flipud(filterbank_mon.T), aspect=’auto’)
show()
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Example: time_varying_filter2 (hears)

This example implements a band pass filter whose center frequency is modulated by a sinusoid function. This modula-
tor is implemented as a FunctionFilterbank. One state variable (here time) must be kept; it is therefore imple-
mented with a class. The bandpass filter coefficients update is an example of how to use a ControlFilterbank.
The bandpass filter is a basic biquadratic filter for which the Q factor and the center frequency must be given. The
input is a white noise.

from brian import *
from brian.hears import *

samplerate = 20*kHz
SoundDuration = 300*ms
sound = whitenoise(SoundDuration, samplerate).ramp()

#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)
nchannels = 1

fc_init = 5000*Hz #initial center frequency of the band pass filter
Q = 5 #quality factor of the band pass filter
update_interval = 1 # the filter coefficients are updated every sample

mean_center_freq = 4*kHz #mean frequency around which the CF will oscillate
amplitude = 1500*Hz #amplitude of the oscillation
frequency = 10*Hz #frequency of the oscillation

#this class is used in a FunctionFilterbank (via its __call__). It outputs the
#center frequency of the band pass filter. Its output is thus later passed as
#input to the controler.
class CenterFrequencyGenerator(object):

def __init__(self):
self.t=0*second

def __call__(self, input):
#update of the center frequency
fc = mean_center_freq+amplitude*sin(2*pi*frequency*self.t)
#update of the state variable
self.t = self.t+1./samplerate
return fc

center_frequency = CenterFrequencyGenerator()

fc_generator = FunctionFilterbank(sound, center_frequency)

#the updater of the controller generates new filter coefficient of the band pass
#filter based on the center frequency it receives from the fc_generator
#(its input)
class CoeffController(object):

def __init__(self, target):
self.BW = 2*arcsinh(1./2/Q)*1.44269
self.target=target

def __call__(self, input):
fc = input[-1,:] #the control variables are taken as the last of the buffer
w0 = 2*pi*fc/array(samplerate)
alpha = sin(w0)*sinh(log(2)/2*self.BW*w0/sin(w0))
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self.target.filt_b[:, 0, 0] = sin(w0)/2
self.target.filt_b[:, 1, 0] = 0
self.target.filt_b[:, 2, 0] = -sin(w0)/2

self.target.filt_a[:, 0, 0] = 1+alpha
self.target.filt_a[:, 1, 0] = -2*cos(w0)
self.target.filt_a[:, 2, 0] = 1-alpha

# In the present example the time varying filter is a LinearFilterbank therefore
#we must initialise the filter coefficients; the one used for the first buffer computation
w0 = 2*pi*fc_init/samplerate
BW = 2*arcsinh(1./2/Q)*1.44269
alpha = sin(w0)*sinh(log(2)/2*BW*w0/sin(w0))

filt_b = zeros((nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))

filt_b[:, 0, 0] = sin(w0)/2
filt_b[:, 1, 0] = 0
filt_b[:, 2, 0] = -sin(w0)/2

filt_a[:, 0, 0] = 1+alpha
filt_a[:, 1, 0] = -2*cos(w0)
filt_a[:, 2, 0] = 1-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank(sound, filt_b, filt_a)
#the updater
updater = CoeffController(bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank(bandpass_filter, fc_generator, bandpass_filter,

updater, update_interval)

time_varying_filter_mon = control.process()

figure(1)
pxx, freqs, bins, im = specgram(squeeze(time_varying_filter_mon),

NFFT=256, Fs=samplerate, noverlap=240)
imshow(flipud(pxx), aspect=’auto’)

show()

Example: time_varying_filter1 (hears)

This example implements a band pass filter whose center frequency is modulated by an Ornstein-Uhlenbeck. The
white noise term used for this process is output by a FunctionFilterbank. The bandpass filter coefficients update is an
example of how to use a ControlFilterbank. The bandpass filter is a basic biquadratic filter for which the Q
factor and the center frequency must be given. The input is a white noise.

from brian import *
from brian.hears import *

samplerate = 20*kHz
SoundDuration = 300*ms
sound = whitenoise(SoundDuration, samplerate).ramp()
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#number of frequency channel (here it must be one as a spectrogram of the
#output is plotted)
nchannels = 1

fc_init = 5000*Hz #initial center frequency of the band pass filter
Q = 5 #quality factor of the band pass filter
update_interval = 4 # the filter coefficients are updated every 4 samples

#parameters of the Ornstein-Uhlenbeck process
s_i = 1200*Hz
tau_i = 100*ms
mu_i = fc_init/tau_i
sigma_i = sqrt(2)*s_i/sqrt(tau_i)
deltaT = defaultclock.dt

#this function is used in a FunctionFilterbank. It outputs a noise term that
#will be later used by the controler to update the center frequency
noise = lambda x: mu_i*deltaT+sigma_i*randn(1)*sqrt(deltaT)
noise_generator = FunctionFilterbank(sound, noise)

#this class will take as input the output of the noise generator and as target
#the bandpass filter center frequency
class CoeffController(object):

def __init__(self, target):
self.target = target
self.deltaT = 1./samplerate
self.BW = 2*arcsinh(1./2/Q)*1.44269
self.fc = fc_init

def __call__(self, input):
#the control variables are taken as the last of the buffer
noise_term = input[-1,:]
#update the center frequency by updateing the OU process
self.fc = self.fc-self.fc/tau_i*self.deltaT+noise_term

w0 = 2*pi*self.fc/samplerate
#update the coefficient of the biquadratic filterbank
alpha = sin(w0)*sinh(log(2)/2*self.BW*w0/sin(w0))
self.target.filt_b[:, 0, 0] = sin(w0)/2
self.target.filt_b[:, 1, 0] = 0
self.target.filt_b[:, 2, 0] = -sin(w0)/2

self.target.filt_a[:, 0, 0] = 1+alpha
self.target.filt_a[:, 1, 0] = -2*cos(w0)
self.target.filt_a[:, 2, 0] = 1-alpha

# In the present example the time varying filter is a LinearFilterbank therefore
#we must initialise the filter coefficients; the one used for the first buffer computation
w0 = 2*pi*fc_init/samplerate
BW = 2*arcsinh(1./2/Q)*1.44269
alpha = sin(w0)*sinh(log(2)/2*BW*w0/sin(w0))

filt_b = zeros((nchannels, 3, 1))
filt_a = zeros((nchannels, 3, 1))
filt_b[:, 0, 0] = sin(w0)/2
filt_b[:, 1, 0] = 0
filt_b[:, 2, 0] = -sin(w0)/2
filt_a[:, 0, 0] = 1+alpha
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filt_a[:, 1, 0] = -2*cos(w0)
filt_a[:, 2, 0] = 1-alpha

#the filter which will have time varying coefficients
bandpass_filter = LinearFilterbank(sound, filt_b, filt_a)
#the updater
updater = CoeffController(bandpass_filter)

#the controller. Remember it must be the last of the chain
control = ControlFilterbank(bandpass_filter, noise_generator, bandpass_filter,

updater, update_interval)

time_varying_filter_mon = control.process()

figure(1)
pxx, freqs, bins, im = specgram(squeeze(time_varying_filter_mon),

NFFT=256, Fs=samplerate, noverlap=240)
imshow(flipud(pxx), aspect=’auto’)

show()

Example: dcgc (hears)

Implementation example of the compressive gammachirp auditory filter as described in Irino, T. and Patterson R., “A
compressive gammachirp auditory filter for both physiological and psychophysical data”, JASA 2001.

A class called DCGC implementing this model is available in the library.

Technical implementation details and notation can be found in Irino, T. and Patterson R., “A Dynamic Compressive
Gammachirp Auditory Filterbank”, IEEE Trans Audio Speech Lang Processing.

from brian import *
from brian.hears import *

simulation_duration = 50*ms
samplerate = 50*kHz
level = 50*dB # level of the input sound in rms dB SPL
sound = whitenoise(simulation_duration, samplerate).ramp()
sound = sound.atlevel(level)

nbr_cf = 50 # number of centre frequencies
# center frequencies with a spacing following an ERB scale
cf = erbspace(100*Hz, 1000*Hz, nbr_cf)

c1 = -2.96 #glide slope of the first filterbank
b1 = 1.81 #factor determining the time constant of the first filterbank
c2 = 2.2 #glide slope of the second filterbank
b2 = 2.17 #factor determining the time constant of the second filterbank

order_ERB = 4
ERBrate = 21.4*log10(4.37*cf/1000+1)
ERBwidth = 24.7*(4.37*cf/1000 + 1)
ERBspace = mean(diff(ERBrate))

# the filter coefficients are updated every update_interval (here in samples)
update_interval = 1
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#bank of passive gammachirp filters. As the control path uses the same passive
#filterbank than the signal path (but shifted in frequency)
#this filterbank is used by both pathway.
pGc = LogGammachirp(sound, cf, b=b1, c=c1)

fp1 = cf + c1*ERBwidth*b1/order_ERB #centre frequency of the signal path

#### Control Path ####

#the first filterbank in the control path consists of gammachirp filters
#value of the shift in ERB frequencies of the control path with respect to the signal path
lct_ERB = 1.5
n_ch_shift = round(lct_ERB/ERBspace) #value of the shift in channels
#index of the channel of the control path taken from pGc
indch1_control = minimum(maximum(1, arange(1, nbr_cf+1)+n_ch_shift), nbr_cf).astype(int)-1
fp1_control = fp1[indch1_control]
#the control path bank pass filter uses the channels of pGc indexed by indch1_control
pGc_control = RestructureFilterbank(pGc, indexmapping=indch1_control)

#the second filterbank in the control path consists of fixed asymmetric compensation filters
frat_control = 1.08
fr2_control = frat_control*fp1_control
asym_comp_control = AsymmetricCompensation(pGc_control, fr2_control, b=b2, c=c2)

#definition of the pole of the asymmetric comensation filters
p0 = 2
p1 = 1.7818*(1-0.0791*b2)*(1-0.1655*abs(c2))
p2 = 0.5689*(1-0.1620*b2)*(1-0.0857*abs(c2))
p3 = 0.2523*(1-0.0244*b2)*(1+0.0574*abs(c2))
p4 = 1.0724

#definition of the parameters used in the control path output levels computation
#(see IEEE paper for details)
decay_tcst = .5*ms
order = 1.
lev_weight = .5
level_ref = 50.
level_pwr1 = 1.5
level_pwr2 = .5
RMStoSPL = 30.
frat0 = .2330
frat1 = .005
exp_deca_val = exp(-1/(decay_tcst*samplerate)*log(2))
level_min = 10**(-RMStoSPL/20)

#definition of the controller class. What is does it take the outputs of the
#first and second fitlerbanks of the control filter as input, compute an overall
#intensity level for each frequency channel. It then uses those level to update
#the filter coefficient of its target, the asymmetric compensation filterbank of
#the signal path.
class CompensensationFilterUpdater(object):

def __init__(self, target):
self.target = target
self.level1_prev = -100
self.level2_prev = -100

def __call__(self, *input):
value1 = input[0][-1,:]
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value2 = input[1][-1,:]
#the current level value is chosen as the max between the current
#output and the previous one decreased by a decay
level1 = maximum(maximum(value1, 0), self.level1_prev*exp_deca_val)
level2 = maximum(maximum(value2, 0), self.level2_prev*exp_deca_val)

self.level1_prev = level1 #the value is stored for the next iteration
self.level2_prev = level2
#the overall intensity is computed between the two filterbank outputs
level_total = lev_weight*level_ref*(level1/level_ref)**level_pwr1+\

(1-lev_weight)*level_ref*(level2/level_ref)**level_pwr2
#then it is converted in dB
level_dB = 20*log10(maximum(level_total, level_min))+RMStoSPL
#the frequency factor is calculated
frat = frat0 + frat1*level_dB
#the centre frequency of the asymmetric compensation filters are updated
fr2 = fp1*frat
coeffs = asymmetric_compensation_coeffs(samplerate, fr2,

self.target.filt_b, self.target.filt_a, b2, c2,
p0, p1, p2, p3, p4)

self.target.filt_b, self.target.filt_a = coeffs

#### Signal Path ####
#the signal path consists of the passive gammachirp filterbank pGc previously
#defined followed by a asymmetric compensation filterbank
fr1 = fp1*frat0
varyingfilter_signal_path = AsymmetricCompensation(pGc, fr1, b=b2, c=c2)
updater = CompensensationFilterUpdater(varyingfilter_signal_path)
#the controler which takes the two filterbanks of the control path as inputs
#and the varying filter of the signal path as target is instantiated

control = ControlFilterbank(varyingfilter_signal_path,
[pGc_control, asym_comp_control],
varyingfilter_signal_path, updater, update_interval)

#run the simulation
#Remember that the controler are at the end of the chain and the output of the
#whole path comes from them
signal = control.process()

figure()
imshow(flipud(signal.T), aspect=’auto’)
show()

Example: artificial_vowels (hears)

This example implements the artificial vowels from Culling, J. F. and Summerfield, Q. (1995a). “Perceptual segrega-
tion of concurrent speech sounds: absence of across-frequency grouping by common interaural delay” J. Acoust. Soc.
Am. 98, 785-797.

from brian import *
from brian.hears import *

duration = 409.6*ms
width = 150*Hz/2
samplerate = 10*kHz

set_default_samplerate(samplerate)
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centres = [225*Hz, 625*Hz, 975*Hz, 1925*Hz]
vowels = {

’ee’:[centres[0], centres[3]],
’ar’:[centres[1], centres[2]],
’oo’:[centres[0], centres[2]],
’er’:[centres[1], centres[3]]
}

def generate_vowel(vowel):
vowel = vowels[vowel]
x = whitenoise(duration)
y = fft(asarray(x).flatten())
f = fftfreq(len(x), 1/samplerate)
I = zeros(len(f), dtype=bool)
for cf in vowel:

I = I|((abs(f)<cf+width)&(abs(f)>cf-width))
I = -I
y[I] = 0
x = ifft(y)
return Sound(x.real)

v1 = generate_vowel(’ee’).ramp()
v2 = generate_vowel(’ar’).ramp()
v3 = generate_vowel(’oo’).ramp()
v4 = generate_vowel(’er’).ramp()

for s in [v1, v2, v3, v4]:
s.play(normalise=True, sleep=True)

s1 = Sound((v1, v2))
#s1.play(normalise=True, sleep=True)

s2 = Sound((v3, v4))
#s2.play(normalise=True, sleep=True)

v1.save(’mono_sound.wav’)
s1.save(’stereo_sound.wav’)

subplot(211)
plot(v1.times, v1)
subplot(212)
v1.spectrogram()
show()

Example: IIRfilterbank (hears)

Example of the use of the class IIRFilterbank available in the library. In this example, a white noise is filtered by
a bank of chebyshev bandpass filters and lowpass filters which are different for every channels. The centre frequencies
of the filters are linearly taken between 100kHz and 1000kHz and its bandwidth or cutoff frequency increases linearly
with frequency.

from brian import *
from brian.hears import *

sound = whitenoise(100*ms).ramp()
sound.level = 50*dB
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### example of a bank of bandpass filter ################
nchannels = 50
center_frequencies = linspace(200*Hz, 1000*Hz, nchannels) #center frequencies
bw = linspace(50*Hz, 300*Hz, nchannels) #bandwidth of the filters
# The maximum loss in the passband in dB. Can be a scalar or an array of length
# nchannels
gpass = 1.*dB
# The minimum attenuation in the stopband in dB. Can be a scalar or an array
# of length nchannels
gstop = 10.*dB
#arrays of shape (2 x nchannels) defining the passband frequencies (Hz)
passband = vstack((center_frequencies-bw/2, center_frequencies+bw/2))
#arrays of shape (2 x nchannels) defining the stopband frequencies (Hz)
stopband = vstack((center_frequencies-1.1*bw, center_frequencies+1.1*bw))

filterbank = IIRFilterbank(sound, nchannels, passband, stopband, gpass, gstop,
’bandstop’, ’cheby1’)

filterbank_mon = filterbank.process()

figure()
subplot(211)
imshow(flipud(filterbank_mon.T), aspect=’auto’)

#### example of a bank of lowpass filter ################
nchannels = 50
cutoff_frequencies = linspace(100*Hz, 1000*Hz, nchannels)
#bandwidth of the transition region between the en of the pass band and the
#begin of the stop band
width_transition = linspace(50*Hz, 300*Hz, nchannels)
# The maximum loss in the passband in dB. Can be a scalar or an array of length
# nchannels
gpass = 1*dB
# The minimum attenuation in the stopband in dB. Can be a scalar or an array of
# length nchannels
gstop = 10*dB
passband = cutoff_frequencies-width_transition/2
stopband = cutoff_frequencies+width_transition/2

filterbank = IIRFilterbank(sound, nchannels, passband, stopband, gpass, gstop,
’low’,’cheby1’)

filterbank_mon=filterbank.process()

subplot(212)
imshow(flipud(filterbank_mon.T), aspect=’auto’)
show()

Example: gammatone (hears)

Example of the use of the class Gammatone available in the library. It implements a fitlerbank of IIR gammatone
filters as described in Slaney, M., 1993, “An Efficient Implementation of the Patterson-Holdsworth Auditory Filter
Bank”. Apple Computer Technical Report #35. In this example, a white noise is filtered by a gammatone filterbank
and the resulting cochleogram is plotted.

from brian import *
from brian.hears import *
from matplotlib import pyplot
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sound = whitenoise(100*ms).ramp()
sound.level = 50*dB

nbr_center_frequencies = 50
b1 = 1.019 #factor determining the time constant of the filters
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)
gammatone = Gammatone(sound, center_frequencies, b=b1)

gt_mon = gammatone.process()

figure()
imshow(gt_mon.T, aspect=’auto’, origin=’lower left’,

extent=(0, sound.duration/ms,
center_frequencies[0], center_frequencies[-1]))

pyplot.yscale(’log’)
title(’Cochleogram’)
ylabel(’Frequency (Hz)’)
xlabel(’Time (ms)’)

show()

Example: cochleagram (hears)

Example of basic filtering of a sound with Brian hears. This example implements a cochleagram based on a gammatone
filterbank followed by halfwave rectification, cube root compression and 10 Hz low pass filtering.

from brian import *
from brian.hears import *

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)

sound = sound1+sound2
sound = sound.ramp()

cf = erbspace(20*Hz, 20*kHz, 3000)
gammatone = Gammatone(sound, cf)
cochlea = FunctionFilterbank(gammatone, lambda x: clip(x, 0, Inf)**(1.0/3.0))
lowpass = LowPass(cochlea, 10*Hz)
output = lowpass.process()

imshow(output.T, origin=’lower left’, aspect=’auto’, vmin=0)
show()

Example: simple_anf (hears)

Example of a simple auditory nerve fibre model with Brian hears.

from brian import *
from brian.hears import *

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)
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sound = sound1+sound2
sound = sound.ramp()

cf = erbspace(20*Hz, 20*kHz, 3000)
cochlea = Gammatone(sound, cf)

# Half-wave rectification and compression [x]^(1/3)
ihc = FunctionFilterbank(cochlea, lambda x: 3*clip(x, 0, Inf)**(1.0/3.0))

# Leaky integrate-and-fire model with noise and refractoriness
eqs = ’’’
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1
I : 1
’’’
anf = FilterbankGroup(ihc, ’I’, eqs, reset=0, threshold=1, refractory=5*ms)

M = SpikeMonitor(anf)
run(sound.duration)
raster_plot(M)
show()

Example: sound_localisation_model (hears)

Example demonstrating the use of many features of Brian hears, including HRTFs, restructuring filters and integration
with Brian. Implements a simplified version of the “ideal” sound localisation model from Goodman and Brette (2010).

The sound is played at a particular spatial location (indicated on the final plot by a red +). Each location has a
corresponding assembly of neurons, whose summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate of the location by the model.

Reference:

Goodman DFM, Brette R (2010). Spike-timing-based computation in sound localization. PLoS Comput. Biol. 6(11).

from brian import *
from brian.hears import *

# Download the IRCAM database, and replace this filename with the location
# you downloaded it to
hrtfdb = IRCAM_LISTEN(r’F:\HRTF\IRCAM’)
subject = 1002
hrtfset = hrtfdb.load_subject(subject)
# This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices
# Choose a random location for the sound to come from
index = randint(hrtfset.num_indices)
# A sound to test the model with
sound = Sound.whitenoise(500*ms)
# This is the specific HRTF for the chosen location
hrtf = hrtfset.hrtf[index]
# We apply the chosen HRTF to the sound, the output has 2 channels
hrtf_fb = hrtf.filterbank(sound)
# We swap these channels (equivalent to swapping the channels in the
# subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank(hrtf_fb, indexmapping=[1, 0])
# Now we apply all of the possible pairs of HRTFs in the set to these
# swapped channels, which means repeating them num_indices times first
hrtfset_fb = hrtfset.filterbank(Repeat(swapped_channels, num_indices))
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# Now we apply cochlear filtering (logically, this comes before the HRTF
# filtering, but since convolution is commutative it is more efficient to
# do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150*Hz, 5*kHz, 40
cf = erbspace(cfmin, cfmax, cfN)
# We repeat each of the HRTFSet filterbank channels cfN times, so that
# for each location we will apply each possible cochlear frequency
gfb = Gammatone(Repeat(hrtfset_fb, cfN),

tile(cf, hrtfset_fb.nchannels))
# Half wave rectification and compression
cochlea = FunctionFilterbank(gfb, lambda x:15*clip(x, 0, Inf)**(1.0/3.0))
# Leaky integrate and fire neuron model
eqs = ’’’
dV/dt = (I-V)/(1*ms)+0.1*xi/(0.5*ms)**.5 : 1
I : 1
’’’
G = FilterbankGroup(cochlea, ’I’, eqs, reset=0, threshold=1, refractory=5*ms)
# The coincidence detector (cd) neurons
cd = NeuronGroup(num_indices*cfN, eqs, reset=0, threshold=1, clock=G.clock)
# Each CD neuron receives precisely two inputs, one from the left ear and
# one from the right, for each location and each cochlear frequency
C = Connection(G, cd, ’V’)
for i in xrange(num_indices*cfN):

C[i, i] = 0.5 # from right ear
C[i+num_indices*cfN, i] = 0.5 # from left ear

# We want to just count the number of CD spikes
counter = SpikeCounter(cd)
# Run the simulation, giving a report on how long it will take as we run
run(sound.duration, report=’stderr’)
# We take the array of counts, and reshape them into a 2D array which we sum
# across frequencies to get the spike count of each location-specific assembly
count = counter.count
count.shape = (num_indices, cfN)
count = sum(count, axis=1)
count = array(count, dtype=float)/amax(count)
# Our guess of the location is the index of the strongest firing assembly
index_guess = argmax(count)
# Now we plot the output, using the coordinates of the HRTFSet
coords = hrtfset.coordinates
azim, elev = coords[’azim’], coords[’elev’]
scatter(azim, elev, 100*count)
plot([azim[index]], [elev[index]], ’+r’, ms=15, mew=2)
plot([azim[index_guess]], [elev[index_guess]], ’xg’, ms=15, mew=2)
xlabel(’Azimuth (deg)’)
ylabel(’Elevation (deg)’)
xlim(-5, 350)
ylim(-50, 95)
show()

Example: linear_gammachirp (hears)

Example of the use of the class LinearGammachirp available in the library. It implements a filterbank of FIR
gammatone filters with linear frequency sweeps as described in Wagner et al. 2009, “Auditory responses in the barn
owl’s nucleus laminaris to clicks: impulse response and signal analysis of neurophonic potential”, J. Neurophysiol.
In this example, a white noise is filtered by a gammachirp filterbank and the resulting cochleogram is plotted. The
different impulse responses are also plotted.
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from brian import *
from brian.hears import *

sound = whitenoise(100*ms).ramp()
sound.level = 50*dB

nbr_center_frequencies = 10 #number of frequency channels in the filterbank
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)

c = 0.0 #glide slope
time_constant = linspace(3, 0.3, nbr_center_frequencies)*ms

gamma_chirp = LinearGammachirp(sound, center_frequencies, time_constant, c)

gamma_chirp_mon = gamma_chirp.process()

figure()

imshow(gamma_chirp_mon.T, aspect=’auto’)
figure()
plot(gamma_chirp.impulse_response.T)
show()

Example: online_computation (hears)

Example of online computation using process(). Plots the RMS value of each channel output by a gammatone
filterbank.

from brian import *
from brian.hears import *

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)

sound = sound1+sound2
sound = sound.ramp()

sound.level = 60*dB

cf = erbspace(20*Hz, 20*kHz, 3000)
fb = Gammatone(sound, cf)

def sum_of_squares(input, running):
return running+sum(input**2, axis=0)

rms = sqrt(fb.process(sum_of_squares)/sound.nsamples)

sound_rms = sqrt(mean(sound**2))

axhline(sound_rms, ls=’--’)
plot(cf, rms)
xlabel(’Frequency (Hz)’)
ylabel(’RMS’)
show()
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Example: log_gammachirp (hears)

Example of the use of the class LogGammachirp available in the library. It implements a filterbank of IIR gam-
machirp filters as Unoki et al. 2001, “Improvement of an IIR asymmetric compensation gammachirp filter”. In this
example, a white noise is filtered by a linear gammachirp filterbank and the resulting cochleogram is plotted. The
different impulse responses are also plotted.

from brian import *
from brian.hears import *

sound = whitenoise(100*ms).ramp()
sound.level = 50*dB

nbr_center_frequencies = 50 #number of frequency channels in the filterbank

c1 = -2.96 #glide slope
b1 = 1.81 #factor determining the time constant of the filters

#center frequencies with a spacing following an ERB scale
cf = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)

gamma_chirp = LogGammachirp(sound, cf, c=c1, b=b1)

gamma_chirp_mon = gamma_chirp.process()

figure()
imshow(flipud(gamma_chirp_mon.T), aspect=’auto’)
show()

Example: drnl (hears)

Implementation example of the dual resonance nonlinear (DRNL) filter with parameters fitted for human as described
in Lopez-Paveda, E. and Meddis, R., A human nonlinear cochlear filterbank, JASA 2001.

A class called DRNL implementing this model is available in the library.

The entire pathway consists of the sum of a linear and a nonlinear pathway.

The linear path consists of a bank of bandpass filters (second order gammatone), a low pass function, and a
gain/attenuation factor, g, in a cascade.

The nonlinear path is a cascade consisting of a bank of gammatone filters, a compression function, a second bank of
gammatone filters, and a low pass function, in that order.

The parameters are given in the form 10**(p0+mlog10(cf)).

from brian import *
from brian.hears import *

simulation_duration = 50*ms
samplerate = 50*kHz
level = 50*dB # level of the input sound in rms dB SPL
sound = whitenoise(simulation_duration, samplerate).ramp()
sound.level = level

nbr_cf = 50 #number of centre frequencies
#center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz,1000*Hz, nbr_cf)
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#conversion to stape velocity (which are the units needed by the following centres)
sound = sound*0.00014

#### Linear Pathway ####

#bandpass filter (second order gammatone filter)
center_frequencies_linear = 10**(-0.067+1.016*log10(center_frequencies))
bandwidth_linear = 10**(0.037+0.785*log10(center_frequencies))
order_linear = 3
gammatone = ApproximateGammatone(sound, center_frequencies_linear,

bandwidth_linear, order=order_linear)

#linear gain
g = 10**(4.2-0.48*log10(center_frequencies))
func_gain = lambda x:g*x
gain = FunctionFilterbank(gammatone, func_gain)

#low pass filter(cascade of 4 second order lowpass butterworth filters)
cutoff_frequencies_linear = center_frequencies_linear
order_lowpass_linear = 2
lp_l = LowPass(gain, cutoff_frequencies_linear)
lowpass_linear = Cascade(gain, lp_l, 4)

#### Nonlinear Pathway ####

#bandpass filter (third order gammatone filters)
center_frequencies_nonlinear = center_frequencies
bandwidth_nonlinear = 10**(-0.031+0.774*log10(center_frequencies))
order_nonlinear = 3
bandpass_nonlinear1 = ApproximateGammatone(sound, center_frequencies_nonlinear,

bandwidth_nonlinear,
order=order_nonlinear)

#compression (linear at low level, compress at high level)
a = 10**(1.402+0.819*log10(center_frequencies)) #linear gain
b = 10**(1.619-0.818*log10(center_frequencies))
v = .2 #compression exponent
func_compression = lambda x: sign(x)*minimum(a*abs(x), b*abs(x)**v)
compression = FunctionFilterbank(bandpass_nonlinear1, func_compression)

#bandpass filter (third order gammatone filters)
bandpass_nonlinear2 = ApproximateGammatone(compression,

center_frequencies_nonlinear,
bandwidth_nonlinear,
order=order_nonlinear)

#low pass filter
cutoff_frequencies_nonlinear = center_frequencies_nonlinear
order_lowpass_nonlinear = 2
lp_nl = LowPass(bandpass_nonlinear2, cutoff_frequencies_nonlinear)
lowpass_nonlinear = Cascade(bandpass_nonlinear2, lp_nl, 3)

#adding the two pathways
dnrl_filter = lowpass_linear+lowpass_nonlinear

dnrl = dnrl_filter.process()

figure()

52 Chapter 3. Getting started



Brian Documentation, Release 1.4.1

imshow(flipud(dnrl.T), aspect=’auto’)
show()

Example: cochlear_models (hears)

Example of the use of the cochlear models (DRNL, DCGC and TanCarney) available in the library.

from brian import *
from brian.hears import *

simulation_duration = 50*ms
set_default_samplerate(50*kHz)
sound = whitenoise(simulation_duration)
sound = sound.atlevel(50*dB) # level in rms dB SPL
cf = erbspace(100*Hz, 1000*Hz, 50) # centre frequencies
interval = 16 #update interval of the time varying filters
## DNRL
#param_drnl = {}
#param_drnl[’lp_nl_cutoff_m’] = 1.1
#drnl_filter=DRNL(sound, cf, type=’human’, param=param_drnl)
#out = drnl_filter.process()

## DCGC
#param_dcgc = {}
#param_dcgc[’c1’] = -2.96

#dcgc_filter = DCGC(sound, cf, interval, param=param_dcgc)
#out = dcgc_filter.process()

## Tan and Carney 2003
tan_filter = TanCarney(sound, cf, interval)
out = tan_filter.process()

figure()
imshow(flipud(out.T), aspect=’auto’)
show()

Example: approximate_gammatone (hears)

Example of the use of the class ApproximateGammatone available in the library. It implements a filterbank
of approximate gammatone filters as described in Hohmann, V., 2002, “Frequency analysis and synthesis using a
Gammatone filterbank”, Acta Acustica United with Acustica. In this example, a white noise is filtered by a gammatone
filterbank and the resulting cochleogram is plotted.

from brian import *
from brian.hears import *

level=50*dB # level of the input sound in rms dB SPL
sound = whitenoise(100*ms).ramp() # generation of a white noise
sound = sound.atlevel(level) # set the sound to a certain dB level

nbr_center_frequencies = 50 # number of frequency channels in the filterbank
# center frequencies with a spacing following an ERB scale
center_frequencies = erbspace(100*Hz, 1000*Hz, nbr_center_frequencies)
# bandwidth of the filters (different in each channel)
bw = 10**(0.037+0.785*log10(center_frequencies))
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gammatone = ApproximateGammatone(sound, center_frequencies, bw, order=3)

gt_mon = gammatone.process()

figure()
imshow(flipud(gt_mon.T), aspect=’auto’)
show()

3.2.5 hears/tan_carney_2003

Example: tan_carney_Fig11 (hears/tan_carney_2003)

Response area and phase response of a model fiber with CF=2200Hz in the Tan&Carney model. Reproduces Fig. 11
from:

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import itertools

import matplotlib.pyplot as plt
import numpy as np

from brian import *
# set_global_preferences(useweave=True)
from brian.hears import *

duration = 50*ms
samplerate = 50*kHz
set_default_samplerate(samplerate)
CF = 2200
freqs = np.arange(250.0, 3501., 50.)
levels = [10, 30, 50, 70, 90]
cf_level = list(itertools.product(freqs, levels))
tones = Sound([Sound.sequence([tone(freq * Hz, duration).atlevel(level*dB).ramp(when=’both’,

duration=2.5*ms,
inplace=False)])

for freq, level in cf_level])

ihc = TanCarney(MiddleEar(tones), [CF] * len(cf_level), update_interval=2)
syn = ZhangSynapse(ihc, CF)
s_mon = StateMonitor(syn, ’s’, record=True, clock=syn.clock)
net = Network(syn, s_mon)
net.run(duration)

reshaped = s_mon.values.reshape((len(freqs), len(levels), -1))

# calculate the phase with respect to the stimulus
pi = np.pi
min_freq, max_freq = 1100, 2900
freq_subset = freqs[(freqs>=min_freq) & (freqs<=max_freq)]
reshaped_subset = reshaped[(freqs>=min_freq) & (freqs<=max_freq), :, :]
phases = np.zeros((reshaped_subset.shape[0], len(levels)))
for f_idx, freq in enumerate(freq_subset):

period = 1.0 / freq
for l_idx in xrange(len(levels)):
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phase_angles = np.arange(reshaped_subset.shape[2])/samplerate % period / period * 2*pi
temp_phases = (np.exp(1j * phase_angles) *

reshaped_subset[f_idx, l_idx, :])
phases[f_idx, l_idx] = np.angle(np.sum(temp_phases))

plt.subplot(2, 1, 1)
rate = reshaped.mean(axis=2)
plt.plot(freqs, rate)
plt.ylabel(’Spikes/sec’)
plt.legend([’%.0f dB’ % level for level in levels], 0)
plt.xlim(0, 4000)
plt.ylim(0, 250)

plt.subplot(2, 1, 2)
relative_phases = (phases.T - phases[:, -1]).T
relative_phases[relative_phases > pi] = relative_phases[relative_phases > pi] - 2*pi
relative_phases[relative_phases < -pi] = relative_phases[relative_phases < -pi] + 2*pi
plt.plot(freq_subset, relative_phases / pi)
plt.ylabel("Phase Re:90dB (pi radians)")
plt.xlabel(’Frequency (Hz)’)
plt.legend([’%.0f dB’ % level for level in levels], 0)
plt.xlim(0, 4000)
plt.ylim(-0.5, 0.75)
plt.show()

Example: tan_carney_Fig7 (hears/tan_carney_2003)

CF-dependence of compressive nonlinearity in the Tan&Carney model. Reproduces Fig. 7 from:

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import itertools

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d

from brian import *
#set_global_preferences(useweave=True)
from brian.hears import *
from brian.hears.filtering.tan_carney import TanCarneySignal, MiddleEar

samplerate = 50*kHz
set_default_samplerate(samplerate)
duration = 50*ms

def gen_tone(freq, level):
’’’
Little helper function to generate a pure tone at frequency ‘freq‘ with
the given ‘level‘. The tone has a duration of 50ms and is ramped with
two ramps of 2.5ms.
’’’
freq = float(freq) * Hz
level = float(level) * dB
return tone(freq, duration).ramp(when=’both’,

duration=2.5*ms,
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inplace=False).atlevel(level)

freqs = [500, 1100, 2000, 4000]
levels = np.arange(-10, 100.1, 5)
cf_level = list(itertools.product(freqs, levels))

# steady-state
start = 10*ms*samplerate
end = 45*ms*samplerate

# For Figure 7 we have manually adjusts the gain for different CFs -- otherwise
# the RMS values wouldn’t be identical for low CFs. Therefore, try to estimate
# suitable gain values first using the lowest CF as a reference
ref_tone = gen_tone(freqs[0], levels[0])
F_out_reference = TanCarneySignal(MiddleEar(ref_tone, gain=1), freqs[0],

update_interval=1).process().flatten()

ref_rms = np.sqrt(np.mean((F_out_reference[start:end] -
np.mean(F_out_reference[start:end]))**2))

gains = np.linspace(0.1, 1, 50) # for higher CFs we need lower gains
cf_gains = list(itertools.product(freqs[1:], gains))
tones = Sound([gen_tone(freq, levels[0]) for freq, _ in cf_gains])
F_out_test = TanCarneySignal(MiddleEar(tones, gain=np.array([g for _, g in cf_gains])),

[cf for cf,_ in cf_gains], update_interval=1).process()

reshaped_Fout = F_out_test.T.reshape((len(freqs[1:]), len(gains), -1))
rms = np.sqrt(np.mean((reshaped_Fout[:, :, start:end].T -

np.mean(reshaped_Fout[:, :, start:end], axis=2).T).T**2,
axis=2))

# get the best gain for each CF using simple linear interpolation
gain_dict = {freqs[0]: 1.} # reference gain
for idx, freq in enumerate(freqs[1:]):

gain_dict[freq] = interp1d(rms[idx, :], gains)(ref_rms)

# now do the real test: tones at different levels for different CFs
tones = Sound([gen_tone(freq, level) for freq, level in cf_level])
F_out = TanCarneySignal(MiddleEar(tones,

gain=np.array([gain_dict[cf] for cf, _ in cf_level])),
[cf for cf, _ in cf_level],
update_interval=1).process()

reshaped_Fout = F_out.T.reshape((len(freqs), len(levels), -1))

rms = np.sqrt(np.mean((reshaped_Fout[:, :, start:end].T -
np.mean(reshaped_Fout[:, :, start:end], axis=2).T).T**2,
axis=2))

# This should more or less reproduce Fig. 7
plt.plot(levels, rms.T)
plt.legend([’%.0f Hz’ % cf for cf in freqs], 0)
plt.xlim(-20, 100)
plt.ylim(1e-6, 1)
plt.yscale(’log’)
plt.xlabel(’input signal SPL (dB)’)
plt.ylabel(’rms of AC component of Fout’)
plt.show()
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Example: tan_carney_simple_test (hears/tan_carney_2003)

Fig. 1 and 3 (spking output without spiking/refractory period) should reproduce the output of the AN3_test_tone.m
and AN3_test_click.m scripts, available in the code accompanying the paper Tan & Carney (2003). This matlab code
is available from http://www.urmc.rochester.edu/labs/Carney-Lab/publications/auditory-models.cfm

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II. Nonlinear
Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003): 2007.

import numpy as np
import matplotlib.pyplot as plt

from brian.stdunits import kHz, Hz, ms
from brian.network import Network
from brian.monitor import StateMonitor, SpikeMonitor
from brian.globalprefs import set_global_preferences

#set_global_preferences(useweave=True)
from brian.hears import (Sound, get_samplerate, set_default_samplerate, tone,

click, silence, dB, TanCarney, MiddleEar, ZhangSynapse)
from brian.clock import reinit_default_clock

set_default_samplerate(50*kHz)
sample_length = 1 / get_samplerate(None)
cf = 1000 * Hz

print ’Testing click response’
duration = 25*ms
levels = [40, 60, 80, 100, 120]
# a click of two samples
tones = Sound([Sound.sequence([click(sample_length*2, peak=level*dB),

silence(duration=duration - sample_length)])
for level in levels])

ihc = TanCarney(MiddleEar(tones), [cf] * len(levels), update_interval=1)
syn = ZhangSynapse(ihc, cf)
s_mon = StateMonitor(syn, ’s’, record=True, clock=syn.clock)
R_mon = StateMonitor(syn, ’R’, record=True, clock=syn.clock)
spike_mon = SpikeMonitor(syn)
net = Network(syn, s_mon, R_mon, spike_mon)
net.run(duration * 1.5)
for idx, level in enumerate(levels):

plt.figure(1)
plt.subplot(len(levels), 1, idx + 1)
plt.plot(s_mon.times / ms, s_mon[idx])
plt.xlim(0, 25)
plt.xlabel(’Time (msec)’)
plt.ylabel(’Sp/sec’)
plt.text(15, np.nanmax(s_mon[idx])/2., ’Peak SPL=%s SPL’ % str(level*dB));
ymin, ymax = plt.ylim()
if idx == 0:

plt.title(’Click responses’)

plt.figure(2)
plt.subplot(len(levels), 1, idx + 1)
plt.plot(R_mon.times / ms, R_mon[idx])
plt.xlabel(’Time (msec)’)
plt.xlabel(’Time (msec)’)
plt.text(15, np.nanmax(s_mon[idx])/2., ’Peak SPL=%s SPL’ % str(level*dB));
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plt.ylim(ymin, ymax)
if idx == 0:

plt.title(’Click responses (with spikes and refractoriness)’)
plt.plot(spike_mon.spiketimes[idx] / ms,

np.ones(len(spike_mon.spiketimes[idx])) * np.nanmax(R_mon[idx]), ’rx’)

print ’Testing tone response’
reinit_default_clock()
duration = 60*ms
levels = [0, 20, 40, 60, 80]
tones = Sound([Sound.sequence([tone(cf, duration).atlevel(level*dB).ramp(when=’both’,

duration=10*ms,
inplace=False),

silence(duration=duration/2)])
for level in levels])

ihc = TanCarney(MiddleEar(tones), [cf] * len(levels), update_interval=1)
syn = ZhangSynapse(ihc, cf)
s_mon = StateMonitor(syn, ’s’, record=True, clock=syn.clock)
R_mon = StateMonitor(syn, ’R’, record=True, clock=syn.clock)
spike_mon = SpikeMonitor(syn)
net = Network(syn, s_mon, R_mon, spike_mon)
net.run(duration * 1.5)
for idx, level in enumerate(levels):

plt.figure(3)
plt.subplot(len(levels), 1, idx + 1)
plt.plot(s_mon.times / ms, s_mon[idx])
plt.xlim(0, 120)
plt.xlabel(’Time (msec)’)
plt.ylabel(’Sp/sec’)
plt.text(1.25 * duration/ms, np.nanmax(s_mon[idx])/2., ’%s SPL’ % str(level*dB));
ymin, ymax = plt.ylim()
if idx == 0:

plt.title(’CF=%.0f Hz - Response to Tone at CF’ % cf)

plt.figure(4)
plt.subplot(len(levels), 1, idx + 1)
plt.plot(R_mon.times / ms, R_mon[idx])
plt.xlabel(’Time (msec)’)
plt.xlabel(’Time (msec)’)
plt.text(1.25 * duration/ms, np.nanmax(R_mon[idx])/2., ’%s SPL’ % str(level*dB));
plt.ylim(ymin, ymax)
if idx == 0:

plt.title(’CF=%.0f Hz - Response to Tone at CF (with spikes and refractoriness)’ % cf)
plt.plot(spike_mon.spiketimes[idx] / ms,

np.ones(len(spike_mon.spiketimes[idx])) * np.nanmax(R_mon[idx]), ’rx’)

plt.show()

3.2.6 electrophysiology

Example: compensation_ex2_spikes (electrophysiology)

Example of spike detection method. Requires binary files “current.npy” and “rawtrace.npy”.

Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012
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import os

from brian import *
import numpy as np
from brian.library.electrophysiology import *

working_dir = os.path.dirname(__file__)

# load data
dt = 0.1*ms
current = np.load(os.path.join(working_dir, "current.npy")) # 10000-long vector, 1s duration
rawtrace = np.load(os.path.join(working_dir, "trace.npy")) # 10000-long vector, 1s duration
t = linspace(0., 1., len(current))

# find spikes and compute score
spikes, scores = find_spikes(rawtrace, dt=dt, check_quality=True)

# plot trace and spikes
plot(t, rawtrace, ’k’)
plot(t[spikes], rawtrace[spikes], ’or’)
show()

Example: bridge (electrophysiology)

Bridge experiment (current-clamp)

from brian import *
from brian.library.electrophysiology import *

defaultclock.dt = .01 * ms

#log_level_debug()

taum = 20 * ms
gl = 20 * nS
Cm = taum * gl
Re = 50 * Mohm
Ce = 0.5 * ms / Re
N = 10

eqs = Equations(’’’
dvm/dt=(-gl*vm+i_inj)/Cm : volt
#Rbridge:ohm
CC:farad
I:amp
’’’)
eqs += electrode(.6 * Re, Ce)
#eqs+=current_clamp(vm=’v_el’,i_inj=’i_cmd’,i_cmd=’I’,Re=.4*Re,Ce=Ce,
# bridge=’Rbridge’)
eqs += current_clamp(vm=’v_el’, i_inj=’i_cmd’, i_cmd=’I’, Re=.4 * Re, Ce=Ce,

bridge=Re, capa_comp=’CC’)
setup = NeuronGroup(N, model=eqs)
setup.I = 0 * nA
setup.v = 0 * mV
#setup.Rbridge=linspace(0*Mohm,60*Mohm,N)
setup.CC = linspace(0 * Ce, Ce, N)
recording = StateMonitor(setup, ’v_rec’, record=True)
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run(50 * ms)
setup.I = .5 * nA
run(200 * ms)
setup.I = 0 * nA
run(150 * ms)
for i in range(N):

plot(recording.times / ms + i * 400, recording[i] / mV, ’k’)
show()

Example: SEVC (electrophysiology)

Voltage-clamp experiment (SEVC)

from brian import *
from brian.library.electrophysiology import *

defaultclock.dt = .01 * ms

taum = 20 * ms # membrane time constant
gl = 1. / (50 * Mohm) # leak conductance
Cm = taum * gl # membrane capacitance
Re = 50 * Mohm # electrode resistance
Ce = 0.1 * ms / Re # electrode capacitance

eqs = Equations(’’’
dvm/dt=(-gl*vm+i_inj)/Cm : volt
I:amp
’’’)
eqs += current_clamp(i_cmd=’I’, Re=Re, Ce=Ce)
setup = NeuronGroup(1, model=eqs)
ampli = SEVC(setup, ’v_rec’, ’I’, 1 * kHz, gain=250 * nS, gain2=50 * nS / ms)
recording = StateMonitor(ampli, ’record’, record=True)
soma = StateMonitor(setup, ’vm’, record=True)

ampli.command = 20 * mV
run(200 * ms)
figure()
plot(recording.times / ms, recording[0] / nA, ’k’)
figure()
plot(soma.times / ms, soma[0] / mV, ’b’)
show()

Example: threshold_analysis (electrophysiology)

Analysis of spike threshold.

Loads a current clamp voltage trace, compensates (remove electrode voltage) and analyses the spikes.

from brian import *
from brian.library.electrophysiology import *
import numpy

dt=.1*ms
Vraw = numpy.load("trace.npy") # Raw current clamp trace
I = numpy.load("current.npy")
V, _ = Lp_compensate(I, Vraw, dt) # Electrode compensation
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# Peaks
spike_criterion=find_spike_criterion(V)
print "Spike detected when V exceeds",float(spike_criterion/mV),"mV"
peaks=spike_peaks(V,vc=spike_criterion) # vc is optional

# Onsets (= spike threshold)
onsets=spike_onsets(V,criterion=3*dt,vc=spike_criterion) # Criterion: dV/dt>3 V/s

# Spike-triggered average of V
STA=spike_shape(V, onsets=onsets, before=100, after=100)

print "Spike duration:",float(spike_duration(V,onsets=onsets)*dt/ms),"ms"
print "Reset potential:",float(reset_potential(V,peaks=peaks)/mV),"mV"

# Spike threshold statistics
slope=slope_threshold(V,onsets=onsets,T=int(5*ms/dt))

# Subthreshold trace
subthreshold=-spike_mask(V)

t=arange(len(V))*dt
subplot(221)
plot(t/ms,V/mV,’k’)
plot(t[peaks]/ms,V[peaks]/mV,".b")
plot(t[onsets]/ms,V[onsets]/mV,".r")
subplot(222)
plot(((arange(len(STA))-100)*dt)/ms,STA/mV,’k’)
subplot(223)
plot(t[subthreshold]/ms,V[subthreshold]/mV,’k’)
subplot(224)
plot(slope/ms,V[onsets]/mV,’.’)
show()

Example: AEC (electrophysiology)

AEC experiment (current-clamp)

from brian import *
from brian.library.electrophysiology import *
from time import time

myclock = Clock(dt=.1 * ms)
clock_rec = Clock(dt=.1 * ms)

#log_level_debug()

taum = 20 * ms
gl = 20 * nS
Cm = taum * gl
Re = 50 * Mohm
Ce = 0.1 * ms / Re

eqs = Equations(’’’
dvm/dt=(-gl*vm+i_inj)/Cm : volt
I:amp
’’’)
eqs += electrode(.6 * Re, Ce)
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eqs += current_clamp(vm=’v_el’, i_inj=’i_cmd’, i_cmd=’I’, Re=.4 * Re, Ce=Ce)
setup = NeuronGroup(1, model=eqs, clock=myclock)
board = AEC(setup, ’v_rec’, ’I’, clock_rec)
recording = StateMonitor(board, ’record’, record=True, clock=myclock)
soma = StateMonitor(setup, ’vm’, record=True, clock=myclock)

run(50 * ms)
board.command = .5 * nA
run(200 * ms)
board.command = 0 * nA
run(150 * ms)
board.start_injection()
t1 = time()
run(1 * second)
t2 = time()
print ’Duration:’, t2 - t1, ’s’
board.stop_injection()
run(100 * ms)
board.estimate()
print ’Re=’, sum(board.Ke) * ohm
board.switch_on()
run(50 * ms)
board.command = .5 * nA
run(200 * ms)
board.command = 0 * nA
run(150 * ms)
board.switch_off()
figure()
plot(recording.times / ms, recording[0] / mV, ’b’)
plot(soma.times / ms, soma[0] / mV, ’r’)
figure()
plot(board.Ke)
show()

Example: compensation_ex1 (electrophysiology)

Example of L^p electrode compensation method. Requires binary files “current.npy” and “rawtrace.npy”.

Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012

import os

from brian import *
import numpy as np
from brian.library.electrophysiology import *

working_dir = os.path.dirname(__file__)

# load data
dt = 0.1*ms
current = np.load(os.path.join(working_dir, "current.npy")) # 10000-long vector, 1s duration
rawtrace = np.load(os.path.join(working_dir, "trace.npy")) # 10000-long vector, 1s duration
t = linspace(0., 1., len(current))

# launch compensation
r = Lp_compensate(current, rawtrace, dt, p=1.0, full=True)
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# print best parameters
print "Best parameters: R, tau, Vr, Re, taue:"
print r["params"]

# plot traces
subplot(211)
plot(t, current, ’k’)

subplot(212)
plot(t, rawtrace, ’k’) # raw trace
plot(t, r["Vfull"], ’b’) # full model trace (neuron and electrode)
plot(t, r["Vcompensated"], ’g’) # compensated trace

show()

Example: DCC (electrophysiology)

An example of single-electrode current clamp recording with discontinuous current clamp (using the electrophysiology
library).

from brian import *
from brian.library.electrophysiology import *

defaultclock.dt = 0.01 * ms

taum = 20 * ms # membrane time constant
gl = 1. / (50 * Mohm) # leak conductance
Cm = taum * gl # membrane capacitance
Re = 50 * Mohm # electrode resistance
Ce = 0.1 * ms / Re # electrode capacitance

eqs = Equations(’’’
dvm/dt=(-gl*vm+i_inj)/Cm : volt
Rbridge:ohm # bridge resistance
I:amp # command current
’’’)
eqs += current_clamp(i_cmd=’I’, Re=Re, Ce=Ce)
setup = NeuronGroup(1, model=eqs)
ampli = DCC(setup, ’v_rec’, ’I’, 1 * kHz)
soma = StateMonitor(setup, ’vm’, record=True)
recording = StateMonitor(setup, ’v_rec’, record=True)
DCCrecording = StateMonitor(ampli, ’record’, record=True)

# No compensation
run(50 * ms)
ampli.command = .5 * nA
run(100 * ms)
ampli.command = 0 * nA
run(50 * ms)

ampli.set_frequency(2 * kHz)
ampli.command = .5 * nA
run(100 * ms)
ampli.command = 0 * nA
run(50 * ms)

plot(recording.times / ms, recording[0] / mV, ’b’)
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plot(DCCrecording.times / ms, DCCrecording[0] / mV, ’k’)
plot(soma.times / ms, soma[0] / mV, ’r’)
show()

Example: compensation_ex3_quality (electrophysiology)

Example of quality check method. Requires binary files “current.npy” and “rawtrace.npy”.

Rossant et al., “A calibration-free electrode compensation method” J. Neurophysiol 2012

import os
from brian import *
import numpy as np
from brian.library.electrophysiology import *

working_dir = os.path.dirname(__file__)

# load data
dt = 0.1*ms
current = np.load(os.path.join(working_dir, "current.npy")) # 10000-long vector, 1s duration
rawtrace = np.load(os.path.join(working_dir, "trace.npy")) # 10000-long vector, 1s duration
compensatedtrace = np.load(os.path.join(working_dir, "compensatedtrace.npy")) # obtained with example1
t = linspace(0., 1., len(current))

# get trace quality of both raw and compensated traces
r = get_trace_quality(rawtrace, current, full=True)
rcomp = get_trace_quality(compensatedtrace, current, full=True)
spikes = r["spikes"]
print "Quality coefficient for raw: %.3f and for compensated trace: %.3f" % \

(r["correlation"], rcomp["correlation"])

# plot trace and spikes
plot(t, rawtrace, ’k’)
plot(t, compensatedtrace, ’g’)
plot(t[spikes], rawtrace[spikes], ’ok’)
plot(t[spikes], compensatedtrace[spikes], ’og’)
show()

Example: voltageclamp (electrophysiology)

Voltage-clamp experiment

from brian import *
from brian.library.electrophysiology import *

defaultclock.dt = .01 * ms

taum = 20 * ms
gl = 20 * nS
Cm = taum * gl
Re = 50 * Mohm
Ce = 0.2 * ms / Re
N = 1
Rs = .9 * Re
tauc = Rs * Ce # critical tau_u
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eqs = Equations(’’’
dvm/dt=(-gl*vm+i_inj)/Cm : volt
’’’)
eqs += electrode(.2 * Re, Ce)
eqs += voltage_clamp(vm=’v_el’, v_cmd=20 * mV, i_inj=’i_cmd’, i_rec=’ic’,

Re=.8 * Re, Rs=.9 * Re, tau_u=.2 * ms)
setup = NeuronGroup(N, model=eqs)
setup.v = 0 * mV
recording = StateMonitor(setup, ’ic’, record=True)
soma = StateMonitor(setup, ’vm’, record=True)

run(200 * ms)
figure()
plot(recording.times / ms, recording[0] / nA, ’k’)
figure()
plot(soma.times / ms, soma[0] / mV, ’b’)
show()

3.2.7 twister

Example: PeterDiehl (twister)

Peter Diehl’s entry for the 2012 Brian twister.

from brian import *
eqs = ’’’
dv/dt = ((-60.*mV-v)+(I_synE+I_synI+I_b)/(10.*nS))/(20*ms) : volt
I_synE = 3.*nS*ge*( 0.*mV-v) : amp
I_synI = 30.*nS*gi*(-80.*mV-v) : amp
I_b : amp
dge/dt = -ge/( 5.*ms) : 1
dgi/dt = -gi/(10.*ms) : 1
’’’
P = NeuronGroup(10000, eqs, threshold=-50.*mV, refractory=5.*ms, reset=-60.*mV)
Pe = P.subgroup(8000)
Pi = P.subgroup(2000)
Ce = Connection(Pe, P, ’ge’, weight=1., sparseness=0.02)
Cie = Connection(Pi, Pe, ’gi’, weight=1., sparseness=0.02)
Cii = Connection(Pi, Pi, ’gi’, weight=1., sparseness=0.02)
eqs_stdp = ’’’
dpre/dt = -pre/(20.*ms) : 1.0
dpost/dt = -post/(20.*ms) : 1.0
’’’
nu = 0.1 # learning rate
alpha = 0.12 # controls the firing rate
stdp = STDP(Cie, eqs=eqs_stdp, pre=’pre+= 1.; w+= nu*(post-alpha)’,

post=’post+= 1.; w+= nu*pre’, wmin=0., wmax= 10.)
M = PopulationRateMonitor(Pe, bin = 1.)
P.I_b = 200.*pA #set the input current
run(10*second)
P.I_b = 600.*pA #increase the input and see how the rate adapts
run(10*second)
plot(M.times[0:-1]/second, M.rate[0:-1])
show()
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Example: FriedemannZenke (twister)

Friedemann Zenke’s winning entry for the 2012 Brian twister.

# ###########################################
#
# Inhibitory synaptic plasticity in a recurrent network model
# (F. Zenke, 2011)
#
# Adapted from:
# Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner.
# ’Inhibitory Plasticity Balances Excitation and Inhibition in Sensory
# Pathways and Memory Networks.’ Science (November 10, 2011).
#
# ###########################################

from brian import *

# ###########################################
# Defining network model parameters
# ###########################################

NE = 8000 # Number of excitatory cells
NI = NE/4 # Number of inhibitory cells

w = 1.*nS # Basic weight unit
tau_ampa = 5.0*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0*ms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections

eta = 1e-2 # Learning rate
tau_stdp = 20*ms # STDP time constant

simtime = 10*second # Simulation time

# ###########################################
# Neuron model
# ###########################################

gl = 10.0*nsiemens # Leak conductance
el = -60*mV # Resting potential
er = -80*mV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold
memc = 200.0*pfarad # Membrane capacitance
bgcurrent = 200*pA # External current

eqs_neurons=’’’
dv/dt=(-gl*(v-el)-(g_ampa*w*v+g_gaba*(v-er)*w)+bgcurrent)/memc : volt
dg_ampa/dt = -g_ampa/tau_ampa : 1
dg_gaba/dt = -g_gaba/tau_gaba : 1
’’’

# ###########################################
# Initialize neuron group
# ###########################################

neurons=NeuronGroup(NE+NI,model=eqs_neurons,threshold=vt,reset=el,refractory=5*ms)
Pe=neurons.subgroup(NE)
Pi=neurons.subgroup(NI)
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# ###########################################
# Connecting the network
# ###########################################

con_e = Connection(Pe,neurons,’g_ampa’,weight=0.3,sparseness=epsilon)
con_ie = Connection(Pi,Pe,’g_gaba’,weight=1e-10,sparseness=epsilon)
con_ii = Connection(Pi,Pi,’g_gaba’,weight=3,sparseness=epsilon)

# ###########################################
# Setting up monitors
# ###########################################

sm = SpikeMonitor(Pe)

# ###########################################
# Run without plasticity
# ###########################################

run(1*second)

# ###########################################
# Inhibitory Plasticity
# ###########################################

alpha = 3*Hz*tau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

eqs_stdp_inhib = ’’’
dA_pre/dt=-A_pre/tau_stdp : 1
dA_post/dt=-A_post/tau_stdp : 1
’’’

stdp_ie = STDP(con_ie, eqs=eqs_stdp_inhib, pre=’A_pre+=1.; w+=(A_post-alpha)*eta;’,
post=’A_post+=1.; w+=A_pre*eta;’, wmax=gmax)

# ###########################################
# Run with plasticity
# ###########################################

run(simtime-1*second,report=’text’)

# ###########################################
# Make plots
# ###########################################

subplot(211)
raster_plot(sm,ms=1.)
title("Before")
xlabel("")
xlim(0.8*1e3,1*1e3)
subplot(212)
raster_plot(sm,ms=1.)
title("After")
xlim((simtime-0.2*second)*1e3,simtime*1e3)
show()
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Example: PierreYger (twister)

Pierre Yger’s winning entry for the 2012 Brian twister.

from brian import *
import numpy, os, pylab

"""
An implementation of a simple topographical network, like those used in Mehring 2005 or Yger 2011.
Cells are aranged randomly on a 2D plane and connected according to a gaussian profile
P(r) = exp(-d**2/(2*sigma**2)), with delays depending linearly on the distances.
Note that the exact number of synapses per neuron is not fixed here.

To avoid any border conditions, the plane is considered to be toroidal.
Script will generate an Synchronous Irregular (SI) slow regime with propagating
waves that will spread in various directions, wandering over the network.

In addition, an external layer of Poisson sources will stimulates some cells on the network, with
a wiring scheme such that the word BRIAN will pop up. External rates can be turned off to observed the
spontaneous activity of the 2D layer. One can observe that despite the inputs is constant, the network
is not always responding to it.

The script will display, while running, the spikes and Vm of the excitatory cells.

Varying sigma will show the various activity structures from a random network (s_lat > 1), to a very
locally connected one (s_lat < 0.1)

"""

### We are setting the global timestep of the simulation
Clock(0.1 * ms)

### Cell parameters ###
tau_m = 20. * ms # Membrane time constant
c_m = 0.2 * nF # Capacitance
tau_exc = 3. * ms # Synaptic time constant (excitatory)
tau_inh = 7. * ms # Synaptic time constant (inhibitory)
tau_ref = 5. * ms # Refractory period
El = -80 * mV # Leak potential
Ee = 0. * mV # Reversal potential (excitation)
Ei = -70.* mV # Reversal potential (inhibition)
Vt = -50 * mV # Spike Threhold
Vr = -60 * mV # Spike Reset

### Equation for a Conductance-based IAF ####
eqs = Equations(’’’
dv/dt = (El-v)/tau_m + (ge*(Ee-v)+gi*(Ei-v))/c_m : volt
dge/dt = -ge*(1./tau_exc) : uS
dgi/dt = -gi*(1./tau_inh) : uS
’’’)

n_cells = 12500 # Total number of cells
n_exc = int(0.8 * n_cells) # 4:1 ratio for exc/inh
size = 1. # Size of the network
simtime = 1000 * ms # Simulation time
sim_step = 1 * ms # Display snapshots every sim_step ms
epsilon = 0.02 # Probability density
s_lat = 0.2 # Spread of the lateral connections
g_exc = 4. * nS # Excitatory conductance
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g_inh = 64. * nS # Inhibitory conductance
g_ext = 200 * nS # External drive
velocity = 0.3 * mm/ms # velocity
ext_rate = 100 * Hz # Rate of the external source
max_distance = size * mm/numpy.sqrt(2) # Since this is a torus
max_delay = max_distance/velocity # Needed for the connectors

### Generate the images with the letters B, R, I, A, N
### To do that, we create a png image and read it as a matrix
pylab.figure()
pylab.text(0.125, 0.4, "B R I A N", size=80)
pylab.setp(gca(), xticks=[], yticks=[])
pylab.savefig("BRIAN.png")
brian_letters = imread("BRIAN.png")
os.remove("BRIAN.png")
brian_letters = numpy.flipud(mean(brian_letters,2)).T
pylab.close()

### We create the cells and generate random positons in [0, size]x[0, size]
all_cells = NeuronGroup(n_cells, model=eqs, threshold=Vt, reset=Vr, refractory=tau_ref)
all_cells.position = size*numpy.random.rand(n_cells, 2)
exc_cells = all_cells[0:n_exc]
inh_cells = all_cells[n_exc:n_cells]

### We initialize v values slightly above Vt, to have initial spikes
all_cells.v = El + 1.1*numpy.random.rand(n_cells) * (Vt - El)

### Now we create the source that will write the word BRIAN
sources = PoissonGroup(1, ext_rate)
sources.position = array([[0.5, 0.5]])

### Function to get the distance between one position and an array of positions
### This is needed to used the vectorized form of the connections in the brian.Connection objects
### Note that the plane is wrapped, to avoid any border effects.
def get_distance(x, y):

d1 = abs(x - y)
min_d = numpy.minimum(d1, size - d1)
return numpy.sqrt(numpy.sum(min_d**2, 1))

### Function returning the probabilities of connections as a functions of distances
def probas(i, j, x, y):

distance = get_distance(x[i], y[j])
return epsilon * numpy.exp(-distance**2/(2*s_lat**2))

### Function returning linear delays as function of distances
def delays(i, j, x, y):

distance = get_distance(x[i], y[j])
return 0.1*ms + (distance * mm )/ velocity

### Function assessing if a cell is located in a particular letter of the word BRIAN
### Return 0 if not, and 1 if yes.
def is_in_brian(i, j, x, y):

a, b = brian_letters.shape
tmp_x, tmp_y = (y[j][:, 0]*a).astype(int), (y[j][:, 1]*b).astype(int)
return 1 - brian_letters[tmp_x, tmp_y]

print "Building network with wrapped 2D gaussian profiles..."
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Ce = Connection(exc_cells, all_cells, ’ge’, weight=g_exc, max_delay=max_delay,
sparseness=lambda i, j : probas(i, j, exc_cells.position, all_cells.position),
delay =lambda i, j : delays(i, j, exc_cells.position, all_cells.position))

Ci = Connection(inh_cells, all_cells, ’gi’, weight=g_inh, max_delay=max_delay,
sparseness=lambda i, j : probas(i, j, inh_cells.position, all_cells.position),
delay =lambda i, j : delays(i, j, inh_cells.position, all_cells.position))

Cext = Connection(sources, all_cells, ’ge’, weight=g_ext, max_delay=max_delay,
sparseness=lambda i, j : is_in_brian(i, j, sources.position, all_cells.position))

print "--> mean probability from excitatory synapses:", Ce.W.getnnz()/float(n_exc*n_cells) * 100, "%"
print "--> mean probability from inhibitory synapses:", Ci.W.getnnz()/float((n_cells - n_exc)*n_cells) * 100, "%"

print "Setting the recorders..."
v_exc = RecentStateMonitor(exc_cells, ’v’, record=True)
s_exc = SpikeCounter(exc_cells)

ion() # To enter the interactive mode
print "Initializing the plots..."
fig1 = pylab.subplot(211)
im = fig1.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1], c=[0]*n_exc)
im.set_clim(0, 1)
fig1.set_ylabel("spikes")
pylab.colorbar(im)
fig2 = pylab.subplot(212)
im = fig2.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1], c=[0]*n_exc)
im.set_clim(El, Vt)
fig2.set_ylabel("v")
pylab.colorbar(im)

manager = pylab.get_current_fig_manager()

print "Running network ..."
for time in xrange(int((simtime/sim_step)/ms)):

run(sim_step)
fig1.cla()
fig1.set_title("t = %g s" %((sim_step * time)/ms))
idx = s_exc.count > 0
if numpy.sum(idx) > 0:

im = fig1.scatter(all_cells.position[:n_exc, 0][idx], all_cells.position[:n_exc, 1][idx], c=[0]*n_exc)
s_exc.count = numpy.zeros(n_exc) ## We reset the spike counter
fig1.set_xlim(0, size)
fig1.set_ylim(0, size)
fig1.set_ylabel("spikes")
im.set_clim(0, 1)
setp(fig1, xticks=[], yticks=[])

fig2.cla()
im = fig2.scatter(all_cells.position[:n_exc, 0], all_cells.position[:n_exc, 1], c=v_exc.values[-1])
fig2.set_xlim(0, size)
fig2.set_ylim(0, size)
fig2.set_ylabel("v")
im.set_clim(El, Vt)
setp(fig2, xticks=[], yticks=[])

manager.canvas.draw()
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manager.canvas.flush_events()
ioff() # To leave the interactive mode

Example: anonymous (twister)

Anonymous entry for the 2012 Brian twister.

’’’
My contribution to the brian twister!

I meant to give it more thought, but I forgot about the deadline!
’’’
from brian import *
from brian.hears import *
import pygame

_mixer_status = [-1,-1]
class SoundMonitor(SpikeMonitor):

"""
Listen to you networks!

Plays pure tones whenever a neuron spikes, frequency is set according to the neuron number.
"""
def __init__(self, source, record=False, delay=0,

frange = (100.*Hz, 5000.*Hz),
duration = 50*ms,
samplerate = 44100*Hz):

super(SoundMonitor, self).__init__(source, record = record, delay = delay)

self.samplerate = samplerate
self.nsamples = np.rint(duration * samplerate)

p = linspace(0, 1, len(source)).reshape((1, len(source)))
p = np.tile(p, (self.nsamples, 1))
freqs = frange[0] * p + (1-p) * frange[1]
del p

times = linspace(0*ms, duration, self.nsamples).reshape((self.nsamples, 1))
times = np.tile(times, (1, len(source)))

self.sounds = np.sin(2 * np.pi * freqs * times)
self._init_mixer()

def propagate(self, spikes):
if len(spikes):

data = np.sum(self.sounds[:,spikes], axis = 1)
x = array((2 ** 15 - 1) * clip(data/amax(data), -1, 1), dtype=int16)
x.shape = x.size
# Make sure pygame receives an array in C-order
x = pygame.sndarray.make_sound(np.ascontiguousarray(x))
x.play()

def _init_mixer(self):
global _mixer_status
if _mixer_status==[-1,-1] or _mixer_status[0]!=1 or _mixer_status != self.samplerate:

pygame.mixer.quit()
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pygame.mixer.init(int(self.samplerate), -16, 1)
_mixer_status=[1,self.samplerate]

def test_cuba():
# The CUBA example with sound!
taum = 20 * ms
taue = 5 * ms
taui = 10 * ms
Vt = -50 * mV
Vr = -60 * mV
El = -49 * mV

eqs = Equations(’’’
dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
’’’)

P = NeuronGroup(4000, model=eqs, threshold=Vt, reset=Vr, refractory=5 * ms)
P.v = Vr
P.ge = 0 * mV
P.gi = 0 * mV

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
we = (60 * 0.27 / 10) * mV # excitatory synaptic weight (voltage)
wi = (-20 * 4.5 / 10) * mV # inhibitory synaptic weight
Ce = Connection(Pe, P, ’ge’, weight=we, sparseness=0.5)
Ci = Connection(Pi, P, ’gi’, weight=wi, sparseness=0.5)
P.v = Vr + rand(len(P)) * (Vt - Vr)

# Record the number of spikes
M = SoundMonitor(P)
run(10 * second)

def test_synfire():
from brian import *
# Neuron model parameters
Vr = -70 * mV
Vt = -55 * mV
taum = 10 * ms
taupsp = 0.325 * ms
weight = 4.86 * mV
# Neuron model
eqs = Equations(’’’
dV/dt=(-(V-Vr)+x)*(1./taum) : volt
dx/dt=(-x+y)*(1./taupsp) : volt
dy/dt=-y*(1./taupsp)+25.27*mV/ms+\

(39.24*mV/ms**0.5)*xi : volt
’’’)
# Neuron groups
P = NeuronGroup(N=1000, model=eqs,

threshold=Vt, reset=Vr, refractory=1 * ms)
Pinput = PulsePacket(t=50 * ms, n=85, sigma=1 * ms)
# The network structure
Pgp = [ P.subgroup(100) for i in range(10)]
C = Connection(P, P, ’y’)
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for i in range(9):
C.connect_full(Pgp[i], Pgp[i + 1], weight)

Cinput = Connection(Pinput, Pgp[0], ’y’)
Cinput.connect_full(weight=weight)

monitor = SoundMonitor(P)

# Setup the network, and run it
P.V = Vr + rand(len(P)) * (Vt - Vr)
run(1*second)
# Plot result

show()

if __name__ == ’__main__’:
test_synfire()

Example: MicheleGiugliano (twister)

Michele Giugliano’s entry for the 2012 Brian twister.

#
# Figure5B - from Giugliano et al., 2004
# Journal of Neurophysiology 92(2):977-96
#
# implemented by Eleni Vasilaki <e.vasilaki@sheffield.ac.uk> and
# Michele Giugliano <michele.giugliano@ua.ac.be>
#
# A sparsely connected network of excitatory neurons, interacting
# via current-based synaptic interactions, and incorporating
# spike-frequency adaptation, is simulated.
#
# Its overall emerging firing rate activity replicates some of the features of
# spontaneous patterned electrical activity, observed experimentally in cultured
# networks of neurons dissociated from the neocortex.
#
from brian import *

# Parameters of the simulation
T = 30000 *ms # life time of the simulation
N = 100 # total number of (excitatory) integrate-and-fire model neurons in the network

# Parameters of each model neuron, voltage dynamics
C = 67.95 *pF # Membrane capacitance of single model neurons
tau = 22.25 *ms # Membrane time-constant of single model neurons
H = 2.39 *mV # Reset voltage, mimicking hyperpolarization potential following a spike
theta= 20 *mV # Threshold voltage for spike initiation
tauarp=7.76 *ms # Absolute refractory period

# Parameters of each model neuron, spike-frequency adaptation dynamics
taua = 2100 *ms # Adaptation time constant
a = 0.75 *pA # Adaptation scaling factor - NO ADAPTATION
D = 1*ms # Unit consistency factor
temp = 1. *ms**(-.5) # Unit consistency factor

# Parameters of network connectivity
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Cee = 0.38 # Sparseness of all-to-all random connectivity
taue = 5 *ms # Decay time constant of excitatory EPSPs
delta= 1.5 * ms # Conduction+synaptic propagation delay
J = 14.5* pA # Strenght of synaptic coupling, up to 18 *pA

# Parameters of background synaptic activity, modelled as a identical and independent noisy extra-input to each model neuron
m0 = 25.1 *pA # Mean background input current
s0 = 92 *pA # Std dev of the (noisy) background input current

# Each model neuron is described as a leaky integrate-and-fire with adaptation and current-driven synapses
eqs = """
dv/dt = - v / tau - a/C * x + Ie/C + (m0 + s0 * xi / temp)/C : mV
dx/dt = -x/taua : 1
dIe/dt = -Ie/taue : pA
"""

# Custom refractory mechanisms are employed here, to allow the membrane potential to be clamped to the reset value H
def myresetfunc(P, spikes):
P.v[spikes] = H #reset voltage
P.x[spikes] += 1 #low pass filter of spikes (adaptation mechanism)

SCR = SimpleCustomRefractoriness(myresetfunc, tauarp, state=’v’)

# The population of identical N model neuon is defined now
P = NeuronGroup(N, model=eqs, threshold=theta, reset=SCR)

# The interneuronal connectivity is defined now
Ce = Connection(P, P, ’Ie’, weight=J, sparseness=Cee, delay=delta)

# Initialization of the state variables, for each model neuron
P.v = rand(len(P)) * 20 * mV #membrane potential
P.x = rand(len(P)) * 2 #low pass filter of spikes
P.Ie = 0 *pA #excitatory synaptic input

# Definition of tools for plotting and visualization of single neuron and population quantities
R = PopulationRateMonitor(P)
M = SpikeMonitor(P)
trace = StateMonitor(P, ’v’, record=0)
tracex = StateMonitor(P, ’x’, record=0)

print "Simulation running... (long-lasting simulation: be patient)"
run(T)

print "Simulation completed! If you did not see any firing rate population burst (lower panel), then slightly increase J!"

# Plot nice spikes - adapted from Brette’s code
vm = trace[0]
spikes0 = [t for i,t in M.spikes if i==0]
for i in range(0,len(spikes0)):

k = int(spikes0[i] / defaultclock.dt)
vm[k] = 80 * mV

subplot(311) #membrane potential of neuron 0
plot(trace.times / ms, vm / mV - 60)

subplot(312) #raster plot
raster_plot(M)
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subplot(313) #smoothed population rate
plot(R.times / ms, R.smooth_rate(5*ms) / Hz, tracex.times / ms, tracex[0] * 10)
ylim(0, 120)

show()

Example: QuentinPauluis (twister)

Quentin Pauluis’s entry for the 2012 Brian twister.

from brian import *

taum = 20 * ms # membrane time constant
taue = 5 * ms # excitatory synaptic time constant
taui = 10 * ms # inhibitory synaptic time constant
Vt = -50 * mV # spike threshold
Vr = -60 * mV # reset value
El = -49 * mV # resting potential
we = (60 * 0.27 / 10) * mV # excitatory synaptic weight
wi = (20 * 4.5 / 10) * mV # inhibitory synaptic weight
eqs = Equations(’’’

dV/dt = (ge-gi-(V-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
’’’)

G = NeuronGroup(4000, model=eqs, threshold=Vt, reset=Vr)
Ge = G.subgroup(3200) # Excitatory neurons
Gi = G.subgroup(800) # Inhibitory neurons
Ce = Connection(Ge, G, ’ge’, sparseness=0.2, weight=we)

Ci = Connection(Gi, G, ’gi’, sparseness=0.2, weight=wi*10)
Cii=Connection(Gi,Gi,’gi’,sparseness=0.2, weight=wi)
M = SpikeMonitor(G)
E=SpikeMonitor(Ge,’+’)
I=SpikeMonitor(Gi,’o’)
MV = StateMonitor(G, ’V’, record=0)
Mge = StateMonitor(G, ’ge’, record=0)
Mgi = StateMonitor(G, ’gi’, record=0)
G.V = Vr + (Vt - Vr) * rand(len(G))
run(2500 * ms)
subplot(211)
raster_plot(M, title=’The CUBA network’, newfigure=False)
raster_plot(E)
raster_plot(I)
subplot(223)
plot(MV.times / ms, MV[0] / mV)
xlabel(’Time (ms)’)
ylabel(’V (mV)’)
subplot(224)
plot(Mge.times / ms, Mge[0] / mV)
plot(Mgi.times / ms, Mgi[0] / mV)
xlabel(’Time (ms)’)
ylabel(’ge and gi (mV)’)
legend((’ge’, ’gi’), ’upper right’)
show()
#new.Figure
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3.2.8 misc

Example: rate_model (misc)

A rate model

from brian import *

N = 50000
tau = 20 * ms
I = 10 * Hz
eqs = ’’’
dv/dt=(I-v)/tau : Hz # note the unit here: this is the output rate
’’’
group = NeuronGroup(N, eqs, threshold=PoissonThreshold())
S = PopulationRateMonitor(group, bin=1 * ms)

run(100 * ms)

plot(S.rate)
show()

Example: I-F_curve (misc)

Input-Frequency curve of a neuron (cortical RS type) Network: 1000 unconnected integrate-and-fire neurons (Brette-
Gerstner) with an input parameter I. The input is set differently for each neuron. Spikes are sent to a ‘neuron’ group
with the same size and variable n, which has the role of a spike counter.

from brian import *
from brian.library.IF import *

N = 1000
eqs = Brette_Gerstner() + Current(’I:amp’)
print eqs
group = NeuronGroup(N, model=eqs, threshold= -20 * mV, reset=AdaptiveReset())
group.vm = -70 * mV
group.I = linspace(0 * nA, 1 * nA, N)

counter = NeuronGroup(N, model=’n:1’)
C = IdentityConnection(group, counter, ’n’)

i = N * 8 / 10
trace = StateMonitor(group, ’vm’, record=i)

duration = 5 * second
run(duration)
subplot(211)
plot(group.I / nA, counter.n / duration)
xlabel(’I (nA)’)
ylabel(’Firing rate (Hz)’)
subplot(212)
plot(trace.times / ms, trace[i] / mV)
xlabel(’Time (ms)’)
ylabel(’Vm (mV)’)
show()
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Example: COBAHH (misc)

This is an implementation of a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2006). Brette, Rudolph, Carnevale,
Hines, Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, NatschlAger, Pecevski, Ermentrout, Djurfeldt, Lansner,
Rochel, Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience

Benchmark 3: random network of HH neurons with exponential synaptic conductances

Clock-driven implementation (no spike time interpolation)

18. Brette - Dec 2007

70s for dt=0.1 ms with exponential Euler

from brian import *

# Parameters
area = 20000 * umetre ** 2
Cm = (1 * ufarad * cm ** -2) * area
gl = (5e-5 * siemens * cm ** -2) * area
El = -60 * mV
EK = -90 * mV
ENa = 50 * mV
g_na = (100 * msiemens * cm ** -2) * area
g_kd = (30 * msiemens * cm ** -2) * area
VT = -63 * mV
# Time constants
taue = 5 * ms
taui = 10 * ms
# Reversal potentials
Ee = 0 * mV
Ei = -80 * mV
we = 6 * nS # excitatory synaptic weight (voltage)
wi = 67 * nS # inhibitory synaptic weight

# The model
eqs = Equations(’’’
dv/dt = (gl*(El-v)+ge*(Ee-v)+gi*(Ei-v)-\

g_na*(m*m*m)*h*(v-ENa)-\
g_kd*(n*n*n*n)*(v-EK))/Cm : volt

dm/dt = alpham*(1-m)-betam*m : 1
dn/dt = alphan*(1-n)-betan*n : 1
dh/dt = alphah*(1-h)-betah*h : 1
dge/dt = -ge*(1./taue) : siemens
dgi/dt = -gi*(1./taui) : siemens
alpham = 0.32*(mV**-1)*(13*mV-v+VT)/ \

(exp((13*mV-v+VT)/(4*mV))-1.)/ms : Hz
betam = 0.28*(mV**-1)*(v-VT-40*mV)/ \

(exp((v-VT-40*mV)/(5*mV))-1)/ms : Hz
alphah = 0.128*exp((17*mV-v+VT)/(18*mV))/ms : Hz
betah = 4./(1+exp((40*mV-v+VT)/(5*mV)))/ms : Hz
alphan = 0.032*(mV**-1)*(15*mV-v+VT)/ \

(exp((15*mV-v+VT)/(5*mV))-1.)/ms : Hz
betan = .5*exp((10*mV-v+VT)/(40*mV))/ms : Hz
’’’)

P = NeuronGroup(4000, model=eqs,
threshold=EmpiricalThreshold(threshold= -20 * mV,
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refractory=3 * ms),
implicit=True, freeze=True)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ’ge’, weight=we, sparseness=0.02)
Ci = Connection(Pi, P, ’gi’, weight=wi, sparseness=0.02)
# Initialization
P.v = El + (randn(len(P)) * 5 - 5) * mV
P.ge = (randn(len(P)) * 1.5 + 4) * 10. * nS
P.gi = (randn(len(P)) * 12 + 20) * 10. * nS

# Record the number of spikes and a few traces
trace = StateMonitor(P, ’v’, record=[1, 10, 100])

run(1 * second)

plot(trace[1])
plot(trace[10])
plot(trace[100])
show()

Example: timed_array (misc)

An example of the TimedArray class used for applying input currents to neurons.

from brian import *

N = 5
duration = 100 * ms
Vr = -60 * mV
Vt = -50 * mV
tau = 10 * ms
Rmin = 1 * Mohm
Rmax = 10 * Mohm
freq = 50 * Hz
k = 10 * nA

eqs = ’’’
dV/dt = (-(V-Vr)+R*I)/tau : volt
R : ohm
I : amp
’’’

G = NeuronGroup(N, eqs, reset=’V=Vr’, threshold=’V>Vt’)
G.R = linspace(Rmin, Rmax, N)

t = linspace(0 * second, duration, int(duration / defaultclock.dt))
I = clip(k * sin(2 * pi * freq * t), 0, Inf)
G.I = TimedArray(I)

M = MultiStateMonitor(G, record=True)

run(duration)

subplot(211)
M[’I’].plot()
ylabel(’I (amp)’)
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subplot(212)
M[’V’].plot()
ylabel(’V (volt)’)
show()

Example: pulsepacket (misc)

This example basically replicates what the Brian PulsePacket object does, and then compares to that object.

from brian import *
from random import gauss, shuffle

# Generator for pulse packet
def pulse_packet(t, n, sigma):

# generate a list of n times with Gaussian distribution, sort them in time, and
# then randomly assign the neuron numbers to them
times = [gauss(t, sigma) for i in range(n)]
times.sort()
neuron = range(n)
shuffle(neuron)
return zip(neuron, times) # returns a list of pairs (i,t)

G1 = SpikeGeneratorGroup(1000, pulse_packet(50 * ms, 1000, 5 * ms))
M1 = SpikeMonitor(G1)
PRM1 = PopulationRateMonitor(G1, bin=1 * ms)

G2 = PulsePacket(50 * ms, 1000, 5 * ms)
M2 = SpikeMonitor(G2)
PRM2 = PopulationRateMonitor(G2, bin=1 * ms)

run(100 * ms)

subplot(221)
raster_plot(M1)
subplot(223)
plot(PRM1.rate)
subplot(222)
raster_plot(M2)
subplot(224)
plot(PRM2.rate)
show()

Example: stim2d (misc)

Example of a 2D stimulus, see the complete description at the Brian Cookbook.

from brian import *
import scipy.ndimage as im

__all__ = [’bar’, ’StimulusArrayGroup’]

def bar(width, height, thickness, angle):
’’’
An array of given dimensions with a bar of given thickness and angle
’’’
stimulus = zeros((width, height))
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stimulus[:, int(height / 2. - thickness / 2.):int(height / 2. + thickness / 2.)] = 1.
stimulus = im.rotate(stimulus, angle, reshape=False)
return stimulus

class StimulusArrayGroup(PoissonGroup):
’’’
A group of neurons which fire with a given stimulus at a given rate

The argument ‘‘stimulus‘‘ should be a 2D array with values between 0 and 1.
The point in the stimulus array at position (y,x) will correspond to the
neuron with index i=y*width+x. This neuron will fire Poisson spikes at
‘‘rate*stimulus[y,x]‘‘ Hz. The stimulus will start at time ‘‘onset‘‘
for ‘‘duration‘‘.
’’’
def __init__(self, stimulus, rate, onset, duration):

height, width = stimulus.shape
stim = stimulus.ravel()*rate
self.stimulus = stim
def stimfunc(t):

if onset < t < (onset + duration):
return stim

else:
return 0. * Hz

PoissonGroup.__init__(self, width * height, stimfunc)

if __name__ == ’__main__’:
import pylab
subplot(121)
stim = bar(100, 100, 10, 90) * 0.9 + 0.1
pylab.imshow(stim, origin=’lower’)
pylab.gray()
G = StimulusArrayGroup(stim, 50 * Hz, 100 * ms, 100 * ms)
M = SpikeMonitor(G)
run(300 * ms)
subplot(122)
raster_plot(M)
axis(xmin=0, xmax=300)
show()

Example: I-F_curve2 (misc)

Input-Frequency curve of a IF model Network: 1000 unconnected integrate-and-fire neurons (leaky IF) with an input
parameter v0. The input is set differently for each neuron. Spikes are sent to a spike counter (counts the spikes emitted
by each neuron).

from brian import *

N = 1000
tau = 10 * ms
eqs = ’’’
dv/dt=(v0-v)/tau : volt
v0 : volt
’’’
group = NeuronGroup(N, model=eqs, threshold=10 * mV, reset=0 * mV, refractory=5 * ms)
group.v = 0 * mV
group.v0 = linspace(0 * mV, 20 * mV, N)
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counter = SpikeCounter(group)

duration = 5 * second
run(duration)
plot(group.v0 / mV, counter.count / duration)
show()

Example: current_clamp (misc)

An example of single-electrode current clamp recording with bridge compensation (using the electrophysiology li-
brary).

from brian import *
from brian.library.electrophysiology import *

taum = 20 * ms # membrane time constant
gl = 1. / (50 * Mohm) # leak conductance
Cm = taum * gl # membrane capacitance
Re = 50 * Mohm # electrode resistance
Ce = 0.5 * ms / Re # electrode capacitance

eqs = Equations(’’’
dvm/dt=(-gl*vm+i_inj)/Cm : volt
Rbridge:ohm # bridge resistance
I:amp # command current
’’’)
eqs += current_clamp(i_cmd=’I’, Re=Re, Ce=Ce, bridge=’Rbridge’)
setup = NeuronGroup(1, model=eqs)
soma = StateMonitor(setup, ’vm’, record=True)
recording = StateMonitor(setup, ’v_rec’, record=True)

# No compensation
run(50 * ms)
setup.I = .5 * nA
run(100 * ms)
setup.I = 0 * nA
run(50 * ms)

# Full compensation
setup.Rbridge = Re
run(50 * ms)
setup.I = .5 * nA
run(100 * ms)
setup.I = 0 * nA
run(50 * ms)

plot(recording.times / ms, recording[0] / mV, ’b’)
plot(soma.times / ms, soma[0] / mV, ’r’)
show()

Example: CUBA (misc)

This is a Brian script implementing a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
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Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98

Benchmark 2: random network of integrate-and-fire neurons with exponential synaptic currents

Clock-driven implementation with exact subthreshold integration (but spike times are aligned to the grid)

R. Brette - Oct 2007

Brian is a simulator for spiking neural networks written in Python, developed by R. Brette and D. Goodman.
http://brian.di.ens.fr

from brian import *
import time

start_time = time.time()
taum = 20 * ms
taue = 5 * ms
taui = 10 * ms
Vt = -50 * mV
Vr = -60 * mV
El = -49 * mV

eqs = Equations(’’’
dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
’’’)

P = NeuronGroup(4000, model=eqs, threshold=Vt, reset=Vr, refractory=5 * ms)
P.v = Vr
P.ge = 0 * mV
P.gi = 0 * mV

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
we = (60 * 0.27 / 10) * mV # excitatory synaptic weight (voltage)
wi = (-20 * 4.5 / 10) * mV # inhibitory synaptic weight
Ce = Connection(Pe, P, ’ge’, weight=we, sparseness=0.02)
Ci = Connection(Pi, P, ’gi’, weight=wi, sparseness=0.02)
P.v = Vr + rand(len(P)) * (Vt - Vr)

# Record the number of spikes
Me = PopulationSpikeCounter(Pe)
Mi = PopulationSpikeCounter(Pi)
# A population rate monitor
M = PopulationRateMonitor(P)

print "Network construction time:", time.time() - start_time, "seconds"
print len(P), "neurons in the network"
print "Simulation running..."
run(1 * msecond)
start_time = time.time()

run(1 * second)

duration = time.time() - start_time
print "Simulation time:", duration, "seconds"
print Me.nspikes, "excitatory spikes"
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print Mi.nspikes, "inhibitory spikes"
plot(M.times / ms, M.smooth_rate(2 * ms, ’gaussian’))
show()

Example: spikes_io (misc)

This script demonstrates how to save/load spikes in AER format from inside Brian.

from brian import *

####################### SAVING #########################

# First we need to generate some spikes
N = 1000
g = PoissonGroup(N, 200*Hz)

# And set up a monitor to record those spikes to the disk
Maer = AERSpikeMonitor(g, ’./dummy.aedat’)

# Now we can run
run(100*ms)

# This line executed automatically when the script ends, but here we
# need to close the file because we re-use it from within the same script
Maer.close()

clear(all = True)
reinit_default_clock()
####################### LOADING ########################

# Now we can re-load the spikes
addr, timestamps = load_aer(’./dummy.aedat’)

# Feed them to a SpikeGeneratorGroup
group = SpikeGeneratorGroup(N, (addr, timestamps))

# The group can now be used as any other, here we choose to monitor
# the spikes
newM = SpikeMonitor(group, record = True)

run(100*ms)

# And plot the result
raster_plot(newM)
show()

Example: non_reliability (misc)

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

Here: a constant current is injected in all trials.

18. Brette
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from brian import *

N = 25
tau = 20 * ms
sigma = .015
eqs_neurons = ’’’
dx/dt=(1.1-x)/tau+sigma*(2./tau)**.5*xi:1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0, refractory=5 * ms)
spikes = SpikeMonitor(neurons)

run(500 * ms)
raster_plot(spikes)
show()

Example: poisson (misc)

This example demonstrates the PoissonGroup object. Here we have used a custom function to generate different rates
at different times.

This example also demonstrates a custom SpikeMonitor.

#import brian_no_units # uncomment to run faster
from brian import *

# Rates

r1 = arange(101, 201) * 0.1 * Hz
r2 = arange(1, 101) * 0.1 * Hz

def myrates(t):
if t < 10 * second:

return r1
else:

return r2
# More compact: myrates=lambda t: (t<10*second and r1) or r2

# Neuron group
P = PoissonGroup(100, myrates)

# Calculation of rates

ns = zeros(len(P))

def ratemonitor(spikes):
ns[spikes] += 1

Mf = SpikeMonitor(P, function=ratemonitor)
M = SpikeMonitor(P)

# Simulation and plotting

run(10 * second)
print "Rates after 10s:"
print ns / (10 * second)

ns[:] = 0

84 Chapter 3. Getting started



Brian Documentation, Release 1.4.1

run(10 * second)
print "Rates after 20s:"
print ns / (10 * second)

raster_plot()
show()

Example: multipleclocks (misc)

This example demonstrates using different clocks for different objects in the network. The clock simclock is the
clock used for the underlying simulation. The clock monclock is the clock used for monitoring the membrane
potential. This monitoring takes place less frequently than the simulation update step to save time and memory.
Finally, the clock inputclock controls when the external ‘current’ Iext should be updated. In this case, we
update it infrequently so we can see the effect on the network.

This example also demonstrates the @network_operation decorator. A function with this decorator will be run as part
of the network update step, in sync with the clock provided (or the default one if none is provided).

from brian import *
# define the three clocks
simclock = Clock(dt=0.1 * ms)
monclock = Clock(dt=0.3 * ms)
inputclock = Clock(dt=100 * ms)
# simple leaky I&F model with external ’current’ Iext as a parameter
tau = 10 * ms
eqs = ’’’
dV/dt = (-V+Iext)/tau : volt
Iext: volt
’’’
# A single leaky I&F neuron with simclock as its clock
G = NeuronGroup(1, model=eqs, reset=0 * mV, threshold=10 * mV, clock=simclock)
G.V = 5 * mV
# This function will be run in sync with inputclock i.e. every 100 ms
@network_operation(clock=inputclock)
def update_Iext():

G.Iext = rand(len(G)) * 20 * mV
# V is monitored in sync with monclock
MV = StateMonitor(G, ’V’, record=0, clock=monclock)
# run and plot
run(1000 * ms)
plot(MV.times / ms, MV[0] / mV)
show()
# You should see 10 different regions, sometimes Iext will be above threshold
# in which case you will see regular spiking at different rates, and sometimes
# it will be below threshold in which case you’ll see exponential decay to that
# value

Example: two_neurons (misc)

Two connected neurons with delays

from brian import *
tau = 10 * ms
w = -1 * mV
v0 = 11 * mV
neurons = NeuronGroup(2, model=’dv/dt=(v0-v)/tau : volt’, threshold=10 * mV, reset=0 * mV, \
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max_delay=5 * ms)
neurons.v = rand(2) * 10 * mV
W = Connection(neurons, neurons, ’v’, delay=2 * ms)
W[0, 1] = w
W[1, 0] = w
S = StateMonitor(neurons, ’v’, record=True)
#mymonitor=SpikeMonitor(neurons[0])
mymonitor = PopulationSpikeCounter(neurons)

run(500 * ms)
plot(S.times / ms, S[0] / mV)
plot(S.times / ms, S[1] / mV)
show()

Example: phase_locking (misc)

Phase locking of IF neurons to a periodic input

from brian import *

tau = 20 * ms
N = 100
b = 1.2 # constant current mean, the modulation varies
f = 10 * Hz

eqs = ’’’
dv/dt=(-v+a*sin(2*pi*f*t)+b)/tau : 1
a : 1
’’’

neurons = NeuronGroup(N, model=eqs, threshold=1, reset=0)
neurons.v = rand(N)
neurons.a = linspace(.05, 0.75, N)
S = SpikeMonitor(neurons)
trace = StateMonitor(neurons, ’v’, record=50)

run(1000 * ms)
subplot(211)
raster_plot(S)
subplot(212)
plot(trace.times / ms, trace[50])
show()

Example: realtime_plotting (misc)

Realtime plotting example

# These lines are necessary for interactive plotting when launching from the
# Eclipse IDE, they may not be necessary in every environment.
import matplotlib
matplotlib.use(’WXAgg’) # You may need to experiment, try WXAgg, GTKAgg, QTAgg, TkAgg

from brian import *
###### Set up the standard CUBA example ######
N = 4000
eqs = ’’’
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dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’
P = NeuronGroup(N, eqs, threshold= -50 * mV, reset= -60 * mV)
P.v = -60 * mV + 10 * mV * rand(len(P))
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ’ge’, weight=1.62 * mV, sparseness=0.02)
Ci = Connection(Pi, P, ’gi’, weight= -9 * mV, sparseness=0.02)

M = SpikeMonitor(P)
trace = RecentStateMonitor(P, ’v’, record=range(5), duration=200 * ms)

ion()
subplot(211)
raster_plot(M, refresh=10 * ms, showlast=200 * ms, redraw=False)
subplot(212)
trace.plot(refresh=10 * ms, showlast=200 * ms)

run(1 * second)

ioff() # switch interactive mode off
show() # and wait for user to close the window before shutting down

Example: van_rossum_metric (misc)

Example of how to use the van Rossum metric.

The VanRossumMetric function, which is defined as a monitor and therefore works online, computes the metric
between every neuron in a given population. The present example show the concept of phase locking: N neurons are
driven by sinusoidal inputs with different amplitude.

Use: output=VanRossumMetric(source, tau=4 * ms)

source is a NeuronGroup of N neurons tau is the time constant of the kernel used in the metric

output is a monitor with attribute distance which is the distance matrix between the neurons in source

from brian import *
from time import time

tau=20*ms
N=100
b=1.2 # constant current mean, the modulation varies
f=10*Hz
delta =2*ms

eqs=’’’
dv/dt=(-v+a*sin(2*pi*f*t)+b)/tau : 1
a : 1
’’’

neurons=NeuronGroup(N,model=eqs,threshold=1,reset=0)
neurons.v=rand(N)
neurons.a=linspace(.05,0.75,N)
S=SpikeMonitor(neurons)
trace=StateMonitor(neurons,’v’,record=50)

3.2. Examples 87



Brian Documentation, Release 1.4.1

van_rossum_metric=VanRossumMetric(neurons, tau=4 * ms)

run(1000*ms)

raster_plot(S)
title(’Raster plot’)

figure()
title(’Distance matrix between spike trains’)
imshow(van_rossum_metric.distance)
colorbar()
show()

Example: remotecontrolclient (misc)

Example of using RemoteControlServer and RemoteControlClient to control a simulation as it runs in
Brian.

Run the script remotecontrolserver.py before running this.

from brian import *
import time

client = RemoteControlClient()

time.sleep(1)

subplot(121)
plot(*client.evaluate(’(M.times, M.values)’))

client.execute(’G.I = 1.1’)

time.sleep(1)

subplot(122)
plot(*client.evaluate(’(M.times, M.values)’))

client.stop()

show()

Example: adaptive_threshold (misc)

A model with adaptive threshold (increases with each spike)

from brian import *

eqs = ’’’
dv/dt = -v/(10*ms) : volt
dvt/dt = (10*mV-vt)/(15*ms) : volt
’’’

reset = ’’’
v=0*mV
vt+=3*mV
’’’
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IF = NeuronGroup(1, model=eqs, reset=reset, threshold=’v>vt’)
IF.rest()
PG = PoissonGroup(1, 500 * Hz)

C = Connection(PG, IF, ’v’, weight=3 * mV)

Mv = StateMonitor(IF, ’v’, record=True)
Mvt = StateMonitor(IF, ’vt’, record=True)

run(100 * ms)

plot(Mv.times / ms, Mv[0] / mV)
plot(Mvt.times / ms, Mvt[0] / mV)

show()

Example: delays (misc)

Random network with external noise and transmission delays

from brian import *
tau = 10 * ms
sigma = 5 * mV
eqs = ’dv/dt = -v/tau+sigma*xi/tau**.5 : volt’
P = NeuronGroup(4000, model=eqs, threshold=10 * mV, reset=0 * mV, \

refractory=5 * ms)
P.v = -60 * mV
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
C = Connection(P, P, ’v’, delay=2 * ms)
C.connect_random(Pe, P, 0.05, weight=.7 * mV)
C.connect_random(Pi, P, 0.05, weight= -2.8 * mV)
M = SpikeMonitor(P, True)
run(1 * second)
print ’Mean rate =’, M.nspikes / 4000. / second
raster_plot(M)
show()

Example: heterogeneous_delays (misc)

Script demonstrating use of a Connection with homogenenous delays

The network consists of a ‘starter’ neuron which fires a single spike at time t=0, connected to 100 leaky integrate and
fire neurons with different delays for each target neuron, with the delays forming a quadratic curve centred at neuron
50. The longest delay is 10ms, and the network is run for 40ms. At the end, the delays are plotted above a colour plot
of the membrane potential of each of the target neurons as a function of time (demonstrating the delays).

from brian import *
# Starter neuron, threshold is below 0 so it fires immediately, reset is below
# threshold so it fires only once.
G = NeuronGroup(1, model=’V:1’, threshold= -1.0, reset= -2.0)
# 100 LIF neurons, no reset or threshold so they will not spike
H = NeuronGroup(100, model=’dV/dt=-V/(10*ms):volt’)
# Connection with delays, here the delays are specified as a function of (i,j)
# giving the delay from neuron i to neuron j. In this case there is only one
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# presynaptic neuron so i will be 0.
C = Connection(G, H, weight=5 * mV, max_delay=10 * ms,

delay=lambda i, j:10 * ms * (j / 50. - 1) ** 2)
M = StateMonitor(H, ’V’, record=True)
run(40 * ms)
subplot(211)
# These are the delays from neuron 0 to neuron i in ms
plot([C.delay[0, i] / ms for i in range(100)])
ylabel(’Delay (ms)’)
title(’Delays’)
subplot(212)
# M.values is an array of all the recorded values, here transposed to make
# it fit with the plot above.
imshow(M.values.T, aspect=’auto’, extent=(0, 100, 40, 0))
xlabel(’Neuron number’)
ylabel(’Time (ms)’)
title(’Potential’)
show()

Example: expIF_network (misc)

A network of exponential IF models with synaptic conductances

from brian import *
from brian.library.IF import *
from brian.library.synapses import *
import time

C = 200 * pF
taum = 10 * msecond
gL = C / taum
EL = -70 * mV
VT = -55 * mV
DeltaT = 3 * mV

# Synapse parameters
Ee = 0 * mvolt
Ei = -80 * mvolt
taue = 5 * msecond
taui = 10 * msecond

eqs = exp_IF(C, gL, EL, VT, DeltaT)
# Two different ways of adding synaptic currents:
eqs += Current(’’’
Ie=ge*(Ee-vm) : amp
dge/dt=-ge/taue : siemens
’’’)
eqs += exp_conductance(’gi’, Ei, taui) # from library.synapses

P = NeuronGroup(4000, model=eqs, threshold= -20 * mvolt, reset=EL, refractory=2 * ms)
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
we = 1.5 * nS # excitatory synaptic weight
wi = 2.5 * we # inhibitory synaptic weight
Ce = Connection(Pe, P, ’ge’, weight=we, sparseness=0.05)
Ci = Connection(Pi, P, ’gi’, weight=wi, sparseness=0.05)
# Initialization
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P.vm = randn(len(P)) * 10 * mV - 70 * mV
P.ge = (randn(len(P)) * 2 + 5) * we
P.gi = (randn(len(P)) * 2 + 5) * wi

# Excitatory input to a subset of excitatory and inhibitory neurons
# Excitatory neurons are excited for the first 200 ms
# Inhibitory neurons are excited for the first 100 ms
input_layer1 = Pe.subgroup(200)
input_layer2 = Pi.subgroup(200)
input1 = PoissonGroup(200, rates=lambda t: (t < 200 * ms and 2000 * Hz) or 0 * Hz)
input2 = PoissonGroup(200, rates=lambda t: (t < 100 * ms and 2000 * Hz) or 0 * Hz)
input_co1 = IdentityConnection(input1, input_layer1, ’ge’, weight=we)
input_co2 = IdentityConnection(input2, input_layer2, ’ge’, weight=we)

# Record the number of spikes
M = SpikeMonitor(P)

print "Simulation running..."
start_time = time.time()
run(500 * ms)
duration = time.time() - start_time
print "Simulation time:", duration, "seconds"
print M.nspikes / 4000., "spikes per neuron"
raster_plot(M)
show()

Example: spike_triggered_average (misc)

Example of the use of the function spike_triggered_average. A white noise is filtered by a gaussian filter (low pass
filter) which output is used to generate spikes (poission process) Those spikes are used in conjunction with the input
signal to retrieve the filter function.

from brian import *
from brian.hears import *
from numpy.random import randn
from numpy.linalg import norm
from matplotlib import pyplot

dt = 0.1*ms
defaultclock.dt = dt
stimulus_duration = 15000*ms
stimulus = randn(int(stimulus_duration/ dt))

#filter
n=200
filt = exp(-((linspace(0.5,n,n))-(n+5)/2)**2/(n/3));
filt = filt/norm(filt)*1000;
filtered_stimulus = convolve(stimulus,filt)

neuron = PoissonGroup(1,lambda t:filtered_stimulus[int(t/dt)])

spikes = SpikeMonitor(neuron)
run(stimulus_duration,report=’text’)
spikes = spikes[0] #resulting spikes

max_interval = 20*ms #window duration of the spike triggered average
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onset = 10*ms
sta,time_axis = spike_triggered_average(spikes,stimulus,max_interval,dt,onset=onset,display=True)

figure()
plot(time_axis,filt/max(filt))
plot(time_axis,sta/max(sta))
xlabel(’time axis’)
ylabel(’sta’)
legend((’real filter’,’estimated filter’))

show()

Example: noisy_ring (misc)

Integrate-and-fire neurons with noise

from brian import *

tau = 10 * ms
sigma = .5
N = 100
J = -1
mu = 2

eqs = """
dv/dt=mu/tau+sigma/tau**.5*xi : 1
"""

group = NeuronGroup(N, model=eqs, threshold=1, reset=0)

C = Connection(group, group, ’v’)
for i in range(N):

C[i, (i + 1) % N] = J

#C.connect_full(group,group,weight=J)
#for i in range(N):
# C[i,i]=0

S = SpikeMonitor(group)
trace = StateMonitor(group, ’v’, record=True)

run(500 * ms)
i, t = S.spikes[-1]

subplot(211)
raster_plot(S)
subplot(212)
plot(trace.times / ms, trace[0])
show()

Example: correlated_inputs (misc)

An example with correlated spike trains From: Brette, R. (2007). Generation of correlated spike trains.
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from brian import *

N = 100
#input = HomogeneousCorrelatedSpikeTrains(N, r=10 * Hz, c=0.1, tauc=10 * ms)

c = .2
nu = linspace(1*Hz, 10*Hz, N)
P = c*dot(nu.reshape((N,1)), nu.reshape((1,N)))/mean(nu**2)
tauc = 5*ms

spikes = mixture_process(nu, P, tauc, 1*second)
#spikes = [(i,t*second) for i,t in spikes]
input = SpikeGeneratorGroup(N, spikes)

S = SpikeMonitor(input)
#S2 = PopulationRateMonitor(input)
#M = StateMonitor(input, ’rate’, record=0)
run(1000 * ms)

#subplot(211)
raster_plot(S)
#subplot(212)
#plot(S2.times / ms, S2.smooth_rate(5 * ms))
#plot(M.times / ms, M[0] / Hz)
show()

Example: HodgkinHuxley (misc)

Hodgkin-Huxley model Assuming area 1*cm**2

from brian import *
from brian.library.ionic_currents import *

#defaultclock.dt=.01*ms # more precise
El = 10.6 * mV
EK = -12 * mV
ENa = 120 * mV
eqs = MembraneEquation(1 * uF) + leak_current(.3 * msiemens, El)
eqs += K_current_HH(36 * msiemens, EK) + Na_current_HH(120 * msiemens, ENa)
eqs += Current(’I:amp’)

neuron = NeuronGroup(1, eqs, implicit=True, freeze=True)

trace = StateMonitor(neuron, ’vm’, record=True)

run(100 * ms)
neuron.I = 10 * uA
run(100 * ms)
plot(trace.times / ms, trace[0] / mV)
show()

Example: correlated_inputs2 (misc)

An example with correlated spike trains From: Brette, R. (2007). Generation of correlated spike trains.
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from brian import *

N = 100
c = .2
nu = linspace(1*Hz, 10*Hz, N)
P = c*dot(nu.reshape((N,1)), nu.reshape((1,N)))/mean(nu**2)
tauc = 5*ms

spikes = mixture_process(nu, P, tauc, 1*second)
input = SpikeGeneratorGroup(N, spikes)

S = SpikeMonitor(input)
run(1000 * ms)

raster_plot(S)
show()

Example: gap_junctions (misc)

Network of noisy IF neurons with gap junctions

from brian import *

N = 300
v0 = 5 * mV
tau = 20 * ms
sigma = 5 * mV
vt = 10 * mV
vr = 0 * mV
g_gap = 1. / N
beta = 60 * mV * 2 * ms
delta = vt - vr

eqs = ’’’
dv/dt=(v0-v)/tau+g_gap*(u-N*v)/tau : volt
du/dt=(N*v0-u)/tau : volt # input from other neurons
’’’

def myreset(P, spikes):
P.v[spikes] = vr # reset
P.v += g_gap * beta * len(spikes) # spike effect
P.u -= delta * len(spikes)

group = NeuronGroup(N, model=eqs, threshold=vt, reset=myreset)

@network_operation
def noise(cl):

x = randn(N) * sigma * (cl.dt / tau) ** .5
group.v += x
group.u += sum(x)

trace = StateMonitor(group, ’v’, record=[0, 1])
spikes = SpikeMonitor(group)
rate = PopulationRateMonitor(group)

run(1 * second)
subplot(311)
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raster_plot(spikes)
subplot(312)
plot(trace.times / ms, trace[0] / mV)
plot(trace.times / ms, trace[1] / mV)
subplot(313)
plot(rate.times / ms, rate.smooth_rate(5 * ms) / Hz)
show()

Example: transient_sync (misc)

Transient synchronisation in a population of noisy IF neurons with distance-dependent synaptic weights (organised as
a ring)

from brian import *

tau = 10 * ms
N = 100
v0 = 5 * mV
sigma = 4 * mV
group = NeuronGroup(N, model=’dv/dt=(v0-v)/tau + sigma*xi/tau**.5 : volt’, \

threshold=10 * mV, reset=0 * mV)
C = Connection(group, group, ’v’, weight=lambda i, j:.4 * mV * cos(2. * pi * (i - j) * 1. / N))
S = SpikeMonitor(group)
R = PopulationRateMonitor(group)
group.v = rand(N) * 10 * mV

run(5000 * ms)
subplot(211)
raster_plot(S)
subplot(223)
imshow(C.W.todense(), interpolation=’nearest’)
title(’Synaptic connections’)
subplot(224)
plot(R.times / ms, R.smooth_rate(2 * ms, filter=’flat’))
title(’Firing rate’)
show()

Example: adaptive (misc)

An adaptive neuron model

from brian import *

PG = PoissonGroup(1, 500 * Hz)
eqs = ’’’
dv/dt = (-w-v)/(10*ms) : volt # the membrane equation
dw/dt = -w/(30*ms) : volt # the adaptation current
’’’
# The adaptation variable increases with each spike
IF = NeuronGroup(1, model=eqs, threshold=20 * mV,

reset=’’’v = 0*mV
w += 3*mV ’’’)

C = Connection(PG, IF, ’v’, weight=3 * mV)

MS = SpikeMonitor(PG, True)
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Mv = StateMonitor(IF, ’v’, record=True)
Mw = StateMonitor(IF, ’w’, record=True)

run(100 * ms)

plot(Mv.times / ms, Mv[0] / mV)
plot(Mw.times / ms, Mw[0] / mV)

show()

Example: topographic_map (misc)

Topographic map - an example of complicated connections. Two layers of neurons. The first layer is connected
randomly to the second one in a topographical way. The second layer has random lateral connections.

from brian import *

N = 100
tau = 10 * ms
tau_e = 2 * ms # AMPA synapse
eqs = ’’’
dv/dt=(I-v)/tau : volt
dI/dt=-I/tau_e : volt
’’’

rates = zeros(N) * Hz
rates[N / 2 - 10:N / 2 + 10] = ones(20) * 30 * Hz
layer1 = PoissonGroup(N, rates=rates)
layer2 = NeuronGroup(N, model=eqs, threshold=10 * mV, reset=0 * mV)

topomap = lambda i, j:exp(-abs(i - j) * .1) * 3 * mV
feedforward = Connection(layer1, layer2, sparseness=.5, weight=topomap)
#feedforward[2,3]=1*mV

lateralmap = lambda i, j:exp(-abs(i - j) * .05) * 0.5 * mV
recurrent = Connection(layer2, layer2, sparseness=.5, weight=lateralmap)

spikes = SpikeMonitor(layer2)

run(1 * second)
subplot(211)
raster_plot(spikes)
subplot(223)
imshow(feedforward.W.todense(), interpolation=’nearest’, origin=’lower’)
title(’Feedforward connection strengths’)
subplot(224)
imshow(recurrent.W.todense(), interpolation=’nearest’, origin=’lower’)
title(’Recurrent connection strengths’)
show()

Example: linked_var (misc)

Example showing linked_var(), connecting two different NeuronGroup variables. Here we show something
like a simplified haircell and auditory nerve fibre model where the hair cells and ANFs are implemented as two separate
NeuronGroup objects. The hair cells filter their inputs via a differential equation, and then emit graded amounts of
neurotransmitter (variable ‘y’) to the auditory nerve fibres input current (variable ‘I’).
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from brian import *

N = 5
f = 50 * Hz
a_min = 1.0
a_max = 100.0
tau_haircell = 50 * ms
tau = 10 * ms
duration = 100 * ms

eqs_haircells = ’’’
input = a*sin(2*pi*f*t) : 1
x = clip(input, 0, Inf)**(1.0/3.0) : 1
a : 1
dy/dt = (x-y)/tau_haircell : 1
’’’

haircells = NeuronGroup(N, eqs_haircells)
haircells.a = linspace(a_min, a_max, N)
M_haircells = MultiStateMonitor(haircells, vars=(’input’, ’y’), record=True)

eqs_nervefibres = ’’’
dV/dt = (I-V)/tau : 1
I : 1
’’’
nervefibres = NeuronGroup(N, eqs_nervefibres, reset=0, threshold=1)
nervefibres.I = linked_var(haircells, ’y’)
M_nervefibres = MultiStateMonitor(nervefibres, record=True)

run(duration)

subplot(221)
M_haircells[’input’].plot()
ylabel(’haircell.input’)
subplot(222)
M_haircells[’y’].plot()
ylabel(’haircell.y’)
subplot(223)
M_nervefibres[’I’].plot()
ylabel(’nervefibres.I’)
subplot(224)
M_nervefibres[’V’].plot()
ylabel(’nervefibres.V’)
show()

Example: named_threshold (misc)

Example with named threshold and reset variables

from brian import *
eqs = ’’’
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
dx/dt = (ge+gi-(x+49*mV))/(20*ms) : volt
’’’
P = NeuronGroup(4000, model=eqs, threshold=’x>-50*mV’, \

reset=Refractoriness(-60 * mV, 5 * ms, state=’x’))

3.2. Examples 97



Brian Documentation, Release 1.4.1

#P=NeuronGroup(4000,model=eqs,threshold=Threshold(-50*mV,state=’x’),\
# reset=Reset(-60*mV,state=’x’)) # without refractoriness
P.x = -60 * mV
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ’ge’, weight=1.62 * mV, sparseness=0.02)
Ci = Connection(Pi, P, ’gi’, weight= -9 * mV, sparseness=0.02)
M = SpikeMonitor(P)
run(1 * second)
raster_plot(M)
show()

Example: minimalexample (misc)

Very short example program.

from brian import *

eqs = ’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’

P = NeuronGroup(4000, model=eqs,
threshold= -50 * mV, reset= -60 * mV)

P.v = -60 * mV + 10 * mV * rand(len(P))
Pe = P.subgroup(3200)
Pi = P.subgroup(800)

Ce = Connection(Pe, P, ’ge’, weight=1.62 * mV, sparseness=0.02)
Ci = Connection(Pi, P, ’gi’, weight= -9 * mV, sparseness=0.02)

M = SpikeMonitor(P)

run(1 * second)
i = 0
while len(M[i]) <= 1:

i += 1
print "The firing rate of neuron", i, "is", firing_rate(M[i]) * Hz
print "The coefficient of variation neuron", i, "is", CV(M[i])
raster_plot(M)
show()

Example: stopping (misc)

Network to demonstrate stopping a simulation during a run

Have a fully connected network of integrate and fire neurons with input fed by a group of Poisson neurons with a
steadily increasing rate, want to determine the point in time at which the network of integrate and fire neurons switches
from no firing to all neurons firing, so we have a network_operation called stop_condition that calls the stop() function
if the monitored network firing rate is above a minimum threshold.

from brian import *

clk = Clock()
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Vr = 0 * mV
El = 0 * mV
Vt = 10 * mV
tau = 10 * ms
weight = 0.2 * mV
duration = 100 * msecond
max_input_rate = 10000 * Hz
num_input_neurons = 1000
input_connection_p = 0.1
rate_per_neuron = max_input_rate / (num_input_neurons * input_connection_p)

P = PoissonGroup(num_input_neurons, lambda t: rate_per_neuron * (t / duration))

G = NeuronGroup(1000, model=’dV/dt=-(V-El)/tau : volt’, threshold=Vt, reset=Vr)
G.V = Vr + (Vt - Vr) * rand(len(G))

CPG = Connection(P, G, weight=weight, sparseness=input_connection_p)

CGG = Connection(G, G, weight=weight)

MP = PopulationRateMonitor(G, bin=1 * ms)

@network_operation
def stop_condition():

if MP.rate[-1] * Hz > 10 * Hz:
stop()

run(duration)

print "Reached population rate>10 Hz by time", clk.t, "+/- 1 ms."

Example: using_classes (misc)

Example of using derived classes in Brian

Using a class derived from one of Brian’s classes can be a useful way of organising code in complicated simulations. A
class such as a NeuronGroup can itself create further NeuronGroup, Connection and NetworkOperation
objects. In order to have these objects included in the simulation, the derived class has to include them in its
contained_objects list (this tells Brian to add these to the Network when the derived class object is added
to the network).

from brian import *

class PoissonDrivenGroup(NeuronGroup):
’’’
This class is a group of leaky integrate-and-fire neurons driven by
external Poisson inputs. The class creates the Poisson inputs and
connects them to itself.
’’’
def __init__(self, N, rate, weight):

tau = 10 * ms
eqs = ’’’
dV/dt = -V/tau : 1
’’’
# It’s essential to call the initialiser of the base class
super(PoissonDrivenGroup, self).__init__(N, eqs, reset=0, threshold=1)
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self.poisson_group = PoissonGroup(N, rate)
self.conn = Connection(self.poisson_group, self, ’V’)
self.conn.connect_one_to_one(weight=weight)
self.contained_objects += [self.poisson_group,

self.conn]

G = PoissonDrivenGroup(100, 100 * Hz, .3)

M = SpikeMonitor(G)
M_pg = SpikeMonitor(G.poisson_group)
trace = StateMonitor(G, ’V’, record=0)

run(1 * second)

subplot(311)
raster_plot(M_pg)
title(’Input spikes’)
subplot(312)
raster_plot(M)
title(’Output spikes’)
subplot(313)
plot(trace.times, trace[0])
title(’Sample trace’)
show()

Example: poissongroup (misc)

Poisson input to an IF model

from brian import *

PG = PoissonGroup(1, lambda t:200 * Hz * (1 + cos(2 * pi * t * 50 * Hz)))
IF = NeuronGroup(1, model=’dv/dt=-v/(10*ms) : volt’, reset=0 * volt, threshold=10 * mV)

C = Connection(PG, IF, ’v’, weight=3 * mV)

MS = SpikeMonitor(PG, True)
Mv = StateMonitor(IF, ’v’, record=True)
rates = StateMonitor(PG, ’rate’, record=True)

run(100 * ms)

subplot(211)
plot(rates.times / ms, rates[0] / Hz)
subplot(212)
plot(Mv.times / ms, Mv[0] / mV)

show()

Example: topographic_map2 (misc)

Topographic map - an example of complicated connections. Two layers of neurons. The first layer is connected
randomly to the second one in a topographical way. The second layer has random lateral connections. Each neuron
has a position x[i].
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from brian import *

N = 100
tau = 10 * ms
tau_e = 2 * ms # AMPA synapse
eqs = ’’’
dv/dt=(I-v)/tau : volt
dI/dt=-I/tau_e : volt
’’’

rates = zeros(N) * Hz
rates[N / 2 - 10:N / 2 + 10] = ones(20) * 30 * Hz
layer1 = PoissonGroup(N, rates=rates)
layer1.x = linspace(0., 1., len(layer1)) # abstract position between 0 and 1
layer2 = NeuronGroup(N, model=eqs, threshold=10 * mV, reset=0 * mV)
layer2.x = linspace(0., 1., len(layer2))

# Generic connectivity function
topomap = lambda i, j, x, y, sigma: exp(-abs(x[i] - y[j]) / sigma)

feedforward = Connection(layer1, layer2, sparseness=.5,
weight=lambda i, j:topomap(i, j, layer1.x, layer2.x, .3) * 3 * mV)

recurrent = Connection(layer2, layer2, sparseness=.5,
weight=lambda i, j:topomap(i, j, layer1.x, layer2.x, .2) * .5 * mV)

spikes = SpikeMonitor(layer2)

run(1 * second)
subplot(211)
raster_plot(spikes)
subplot(223)
imshow(feedforward.W.todense(), interpolation=’nearest’, origin=’lower’)
title(’Feedforward connection strengths’)
subplot(224)
imshow(recurrent.W.todense(), interpolation=’nearest’, origin=’lower’)
title(’Recurrent connection strengths’)
show()

Example: leaky_if (misc)

A very simple example Brian script to show how to implement a leaky integrate and fire model. In this example, we
also drive the single leaky integrate and fire neuron with regularly spaced spikes from the SpikeGeneratorGroup.

from brian import *

tau = 10 * ms
Vr = -70 * mV
Vt = -55 * mV

G = NeuronGroup(1, model=’dV/dt = -(V-Vr)/tau : volt’, threshold=Vt, reset=Vr)

spikes = [(0, t*second) for t in linspace(10 * ms, 100 * ms, 25)]
input = SpikeGeneratorGroup(1, spikes)

C = Connection(input, G)
C[0, 0] = 5 * mV
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M = StateMonitor(G, ’V’, record=True)

G.V = Vr
run(100 * ms)
plot(M.times / ms, M[0] / mV)
show()

Example: mirollo_strogatz (misc)

Mirollo-Strogatz network

from brian import *

tau = 10 * ms
v0 = 11 * mV
N = 20
w = .1 * mV

group = NeuronGroup(N, model=’dv/dt=(v0-v)/tau : volt’, threshold=10 * mV, reset=0 * mV)

W = Connection(group, group, ’v’, weight=w)

group.v = rand(N) * 10 * mV

S = SpikeMonitor(group)

run(300 * ms)

raster_plot(S)
show()

Example: COBA (misc)

This is a Brian script implementing a benchmark described in the following review paper:

Simulation of networks of spiking neurons: A review of tools and strategies (2007). Brette, Rudolph, Carnevale, Hines,
Beeman, Bower, Diesmann, Goodman, Harris, Zirpe, Natschlager, Pecevski, Ermentrout, Djurfeldt, Lansner, Rochel,
Vibert, Alvarez, Muller, Davison, El Boustani and Destexhe. Journal of Computational Neuroscience 23(3):349-98

Benchmark 1: random network of integrate-and-fire neurons with exponential synaptic conductances

Clock-driven implementation with Euler integration (no spike time interpolation)

R. Brette - Dec 2007

Brian is a simulator for spiking neural networks written in Python, developed by R. Brette and D. Goodman.
http://brian.di.ens.fr

from brian import *
import time

# Time constants
taum = 20 * msecond
taue = 5 * msecond
taui = 10 * msecond
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# Reversal potentials
Ee = (0. + 60.) * mvolt
Ei = (-80. + 60.) * mvolt

start_time = time.time()
eqs = Equations(’’’
dv/dt = (-v+ge*(Ee-v)+gi*(Ei-v))*(1./taum) : volt
dge/dt = -ge*(1./taue) : 1
dgi/dt = -gi*(1./taui) : 1
’’’)
# NB 1: conductances are in units of the leak conductance
# NB 2: multiplication is faster than division

P = NeuronGroup(4000, model=eqs, threshold=10 * mvolt, \
reset=0 * mvolt, refractory=5 * msecond,
order=1, compile=True)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
we = 6. / 10. # excitatory synaptic weight (voltage)
wi = 67. / 10. # inhibitory synaptic weight
Ce = Connection(Pe, P, ’ge’, weight=we, sparseness=0.02)
Ci = Connection(Pi, P, ’gi’, weight=wi, sparseness=0.02)
# Initialization
P.v = (randn(len(P)) * 5 - 5) * mvolt
P.ge = randn(len(P)) * 1.5 + 4
P.gi = randn(len(P)) * 12 + 20

# Record the number of spikes
Me = PopulationSpikeCounter(Pe)
Mi = PopulationSpikeCounter(Pi)

print "Network construction time:", time.time() - start_time, "seconds"
print "Simulation running..."
start_time = time.time()

run(1 * second)
duration = time.time() - start_time
print "Simulation time:", duration, "seconds"
print Me.nspikes, "excitatory spikes"
print Mi.nspikes, "inhibitory spikes"

Example: ring (misc)

A ring of integrate-and-fire neurons.

from brian import *

tau = 10 * ms
v0 = 11 * mV
N = 20
w = 1 * mV

ring = NeuronGroup(N, model=’dv/dt=(v0-v)/tau : volt’, threshold=10 * mV, reset=0 * mV)

W = Connection(ring, ring, ’v’)
for i in range(N):

W[i, (i + 1) % N] = w
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ring.v = rand(N) * 10 * mV

S = SpikeMonitor(ring)

run(300 * ms)

raster_plot(S)
show()

Example: after_potential (misc)

A model with depolarizing after-potential.

from brian import *

v0=20.5*mV
eqs = ’’’
dv/dt = (v0-v)/(30*ms) : volt # the membrane equation
dAP/dt = -AP/(3*ms) : volt # the after-potential
vm = v+AP : volt # total membrane potential
’’’
IF = NeuronGroup(1, model=eqs, threshold=’vm>20*mV’,

reset=’v=0*mV; AP=10*mV’)
Mv = StateMonitor(IF, ’vm’, record=True)

run(500 * ms)
plot(Mv.times / ms, Mv[0] / mV)
show()

Example: cable (misc)

Dendrite with 100 compartments

from brian import *
from brian.compartments import *
from brian.library.ionic_currents import *

length = 1 * mm
nseg = 100
dx = length / nseg
Cm = 1 * uF / cm ** 2
gl = 0.02 * msiemens / cm ** 2
diam = 1 * um
area = pi * diam * dx
El = 0 * mV
Ri = 100 * ohm * cm
ra = Ri * 4 / (pi * diam ** 2)

print "Time constant =", Cm / gl
print "Space constant =", .5 * (diam / (gl * Ri)) ** .5

segments = {}
for i in range(nseg):

segments[i] = MembraneEquation(Cm * area) + leak_current(gl * area, El)
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segments[0] += Current(’I:nA’)

cable = Compartments(segments)
for i in range(nseg - 1):

cable.connect(i, i + 1, ra * dx)

neuron = NeuronGroup(1, model=cable)
#neuron.vm_0=10*mV
neuron.I_0 = .05 * nA

trace = []
for i in range(10):

trace.append(StateMonitor(neuron, ’vm_’ + str(10 * i), record=True))

run(200 * ms)

for i in range(10):
plot(trace[i].times / ms, trace[i][0] / mV)

show()

Example: reliability (misc)

Reliability of spike timing. See e.g. Mainen & Sejnowski (1995) for experimental results in vitro.

18. Brette

from brian import *

# The common noisy input
N = 25
tau_input = 5 * ms
input = NeuronGroup(1, model=’dx/dt=-x/tau_input+(2./tau_input)**.5*xi:1’)

# The noisy neurons receiving the same input
tau = 10 * ms
sigma = .015
eqs_neurons = ’’’
dx/dt=(0.9+.5*I-x)/tau+sigma*(2./tau)**.5*xi:1
I : 1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0, refractory=5 * ms)
neurons.x = rand(N)
neurons.I = linked_var(input,’x’) # input.x is continuously fed into neurons.I
spikes = SpikeMonitor(neurons)

run(500 * ms)
raster_plot(spikes)
show()

Example: if (misc)

A very simple example Brian script to show how to implement an integrate and fire model. In this example, we also
drive the single integrate and fire neuron with regularly spaced spikes from the SpikeGeneratorGroup.

from brian import *
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tau = 10 * ms
Vr = -70 * mV
Vt = -55 * mV

G = NeuronGroup(1, model=’V:volt’, threshold=Vt, reset=Vr)

input = SpikeGeneratorGroup(1, [(0, t * ms) for t in linspace(10, 100, 25)])

C = Connection(input, G)
C[0, 0] = 2 * mV

M = StateMonitor(G, ’V’, record=True)

G.V = Vr
run(100 * ms)
plot(M.times / ms, M[0] / mV)
show()

Example: remotecontrolserver (misc)

Example of using RemoteControlServer and RemoteControlClient to control a simulation as it runs in
Brian.

After running this script, run remotecontrolclient.py or paste the code from that script into an IPython shell for inter-
active control.

from brian import *

eqs = ’’’
dV/dt = (I-V)/(10*ms)+0.1*xi*(2/(10*ms))**.5 : 1
I : 1
’’’

G = NeuronGroup(3, eqs, reset=0, threshold=1)
M = RecentStateMonitor(G, ’V’, duration=50*ms)

server = RemoteControlServer()

run(1e10*second)

3.2.9 modelfitting

Example: modelfitting_groups (modelfitting)

Example showing how to fit a single model with different target spike trains (several groups).

from brian import loadtxt, ms, Equations, second
from brian.library.modelfitting import *

if __name__ == ’__main__’:

model = Equations(’’’
dV/dt=(R*I-V)/tau : 1
I : 1
R : 1
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tau : second
’’’)

input = loadtxt(’current.txt’)
spikes0 = loadtxt(’spikes.txt’)
spikes = []
for i in xrange(2):

spikes.extend([(i, spike*second + 5*i*ms) for spike in spikes0])

results = modelfitting( model = model,
reset = 0,
threshold = 1,
data = spikes,
input = input,
dt = .1*ms,
popsize = 1000,
maxiter = 3,
cpu = 1,
delta = 4*ms,
R = [1.0e9, 9.0e9],
tau = [10*ms, 40*ms],
delays = [-10*ms, 10*ms])

print_table(results)

Example: modelfitting_machines (modelfitting)

Model fitting example using several machines. Before running this example, you must start the Playdoh server on the
remote machines.

from brian import loadtxt, ms, Equations
from brian.library.modelfitting import *

if __name__ == ’__main__’:
# List of machines IP addresses
machines = [’bobs-machine.university.com’,

’jims-machine.university.com’]

equations = Equations(’’’
dV/dt=(R*I-V)/tau : 1
I : 1
R : 1
tau : second

’’’)
input = loadtxt(’current.txt’)
spikes = loadtxt(’spikes.txt’)
results = modelfitting( model = equations,

reset = 0,
threshold = 1,
data = spikes,
input = input,
dt = .1*ms,
popsize = 1000,
maxiter = 3,
delta = 4*ms,
unit_type = ’CPU’,
machines = machines,
R = [1.0e9, 9.0e9],
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tau = [10*ms, 40*ms],
refractory = [0*ms, 10*ms])

print_table(results)

Example: modelfitting (modelfitting)

Model fitting example. Fit an integrate-and-fire model to an in-vitro electrophysiological recording during one second.

from brian import loadtxt, ms, Equations
from brian.library.modelfitting import *

if __name__ == ’__main__’:
equations = Equations(’’’

dV/dt=(R*I-V)/tau : 1
I : 1
R : 1
tau : second

’’’)
input = loadtxt(’current.txt’)
spikes = loadtxt(’spikes.txt’)
results = modelfitting( model = equations,

reset = 0,
threshold = 1,
data = spikes,
input = input,
dt = .1*ms,
popsize = 1000,
maxiter = 3,
delta = 4*ms,
R = [1.0e9, 9.0e9],
tau = [10*ms, 40*ms],
refractory = [0*ms, 10*ms])

print_table(results)

3.2.10 frompapers

Example: Brunel_Hakim_1999 (frompapers)

Dynamics of a network of sparsely connected inhibitory current-based integrate-and-fire neurons. Individual neu-
rons fire irregularly at low rate but the network is in an oscillatory global activity regime where neurons are weakly
synchronized.

Reference: “Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates” Nicolas
Brunel & Vincent Hakim Neural Computation 11, 1621-1671 (1999)

from brian import *

N = 5000
Vr = 10 * mV
theta = 20 * mV
tau = 20 * ms
delta = 2 * ms
taurefr = 2 * ms
duration = .1 * second
C = 1000
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sparseness = float(C)/N
J = .1 * mV
muext = 25 * mV
sigmaext = 1 * mV

eqs = """
dV/dt = (-V+muext + sigmaext * sqrt(tau) * xi)/tau : volt
"""

group = NeuronGroup(N, eqs, threshold=theta,
reset=Vr, refractory=taurefr)

group.V = Vr
conn = Connection(group, group, state=’V’, delay=delta,

weight = -J,
sparseness=sparseness)

M = SpikeMonitor(group)
LFP = PopulationRateMonitor(group, bin=0.4 * ms)

run(duration)

subplot(211)
raster_plot(M)
xlim(0, duration/ms)

subplot(212)
plot(LFP.times_/ms, LFP.rate)
xlim(0, duration/ms)

show()

Example: Brette_Gerstner_2005 (frompapers)

Adaptive exponential integrate-and-fire model. http://www.scholarpedia.org/article/Adaptive_exponential_integrate-
and-fire_model

Introduced in Brette R. and Gerstner W. (2005), Adaptive Exponential Integrate-and-Fire Model as an Effective De-
scription of Neuronal Activity, J. Neurophysiol. 94: 3637 - 3642.

from brian import *

# Parameters
C = 281 * pF
gL = 30 * nS
taum = C / gL
EL = -70.6 * mV
VT = -50.4 * mV
DeltaT = 2 * mV
Vcut = VT + 5 * DeltaT

# Pick an electrophysiological behaviour
tauw, a, b, Vr = 144 * ms, 4 * nS, 0.0805 * nA, -70.6 * mV # Regular spiking (as in the paper)
#tauw,a,b,Vr=20*ms,4*nS,0.5*nA,VT+5*mV # Bursting
#tauw,a,b,Vr=144*ms,2*C/(144*ms),0*nA,-70.6*mV # Fast spiking

eqs = """
dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
dw/dt=(a*(vm-EL)-w)/tauw : amp
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I : amp
"""

neuron = NeuronGroup(1, model=eqs, threshold=Vcut, reset="vm=Vr;w+=b", freeze=True)
neuron.vm = EL
trace = StateMonitor(neuron, ’vm’, record=0)
spikes = SpikeMonitor(neuron)

run(20 * ms)
neuron.I = 1 * nA
run(100 * ms)
neuron.I = 0 * nA
run(20 * ms)

# We draw nicer spikes
vm = trace[0]
for _, t in spikes.spikes:

i = int(t / defaultclock.dt)
vm[i] = 20 * mV

plot(trace.times / ms, vm / mV)
show()

Example: Rothman_Manis_2003 (frompapers)

Cochlear neuron model of Rothman & Manis

Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear
nucleus neurons. J Neurophysiol 89:3097-113.

All model types differ only by the maximal conductances.

Adapted from their Neuron implementation by Romain Brette

from brian import *

#defaultclock.dt=0.025*ms # for better precision

’’’
Simulation parameters: choose current amplitude and neuron type
(from type1c, type1t, type12, type 21, type2, type2o)
’’’
neuron_type = ’type1c’
Ipulse = 250 * pA

C = 12 * pF
Eh = -43 * mV
EK = -70 * mV # -77*mV in mod file
El = -65 * mV
ENa = 50 * mV
nf = 0.85 # proportion of n vs p kinetics
zss = 0.5 # steady state inactivation of glt
celsius = 22. # temperature
q10 = 3. ** ((celsius - 22) / 10.)
# hcno current (octopus cell)
frac = 0.0
qt = 4.5 ** ((celsius - 33.) / 10.)
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# Maximal conductances of different cell types in nS
maximal_conductances = dict(
type1c=(1000, 150, 0, 0, 0.5, 0, 2),
type1t=(1000, 80, 0, 65, 0.5, 0, 2),
type12=(1000, 150, 20, 0, 2, 0, 2),
type21=(1000, 150, 35, 0, 3.5, 0, 2),
type2=(1000, 150, 200, 0, 20, 0, 2),
type2o=(1000, 150, 600, 0, 0, 40, 2) # octopus cell
)
gnabar, gkhtbar, gkltbar, gkabar, ghbar, gbarno, gl = [x * nS for x in maximal_conductances[neuron_type]]

# Classical Na channel
eqs_na = """
ina = gnabar*m**3*h*(ENa-v) : amp
dm/dt=q10*(minf-m)/mtau : 1
dh/dt=q10*(hinf-h)/htau : 1
minf = 1./(1+exp(-(vu + 38.) / 7.)) : 1
hinf = 1./(1+exp((vu + 65.) / 6.)) : 1
mtau = ((10. / (5*exp((vu+60.) / 18.) + 36.*exp(-(vu+60.) / 25.))) + 0.04)*ms : ms
htau = ((100. / (7*exp((vu+60.) / 11.) + 10.*exp(-(vu+60.) / 25.))) + 0.6)*ms : ms
"""

# KHT channel (delayed-rectifier K+)
eqs_kht = """
ikht = gkhtbar*(nf*n**2 + (1-nf)*p)*(EK-v) : amp
dn/dt=q10*(ninf-n)/ntau : 1
dp/dt=q10*(pinf-p)/ptau : 1
ninf = (1 + exp(-(vu + 15) / 5.))**-0.5 : 1
pinf = 1. / (1 + exp(-(vu + 23) / 6.)) : 1
ntau = ((100. / (11*exp((vu+60) / 24.) + 21*exp(-(vu+60) / 23.))) + 0.7)*ms : ms
ptau = ((100. / (4*exp((vu+60) / 32.) + 5*exp(-(vu+60) / 22.))) + 5)*ms : ms
"""

# Ih channel (subthreshold adaptive, non-inactivating)
eqs_ih = """
ih = ghbar*r*(Eh-v) : amp
dr/dt=q10*(rinf-r)/rtau : 1
rinf = 1. / (1+exp((vu + 76.) / 7.)) : 1
rtau = ((100000. / (237.*exp((vu+60.) / 12.) + 17.*exp(-(vu+60.) / 14.))) + 25.)*ms : ms
"""

# KLT channel (low threshold K+)
eqs_klt = """
iklt = gkltbar*w**4*z*(EK-v) : amp
dw/dt=q10*(winf-w)/wtau : 1
dz/dt=q10*(zinf-z)/wtau : 1
winf = (1. / (1 + exp(-(vu + 48.) / 6.)))**0.25 : 1
zinf = zss + ((1.-zss) / (1 + exp((vu + 71.) / 10.))) : 1
wtau = ((100. / (6.*exp((vu+60.) / 6.) + 16.*exp(-(vu+60.) / 45.))) + 1.5)*ms : ms
ztau = ((1000. / (exp((vu+60.) / 20.) + exp(-(vu+60.) / 8.))) + 50)*ms : ms
"""

# Ka channel (transient K+)
eqs_ka = """
ika = gkabar*a**4*b*c*(EK-v): amp
da/dt=q10*(ainf-a)/atau : 1
db/dt=q10*(binf-b)/btau : 1
dc/dt=q10*(cinf-c)/ctau : 1
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ainf = (1. / (1 + exp(-(vu + 31) / 6.)))**0.25 : 1
binf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
cinf = 1. / (1 + exp((vu + 66) / 7.))**0.5 : 1
atau = ((100. / (7*exp((vu+60) / 14.) + 29*exp(-(vu+60) / 24.))) + 0.1)*ms : ms
btau = ((1000. / (14*exp((vu+60) / 27.) + 29*exp(-(vu+60) / 24.))) + 1)*ms : ms
ctau = ((90. / (1 + exp((-66-vu) / 17.))) + 10)*ms : ms
"""

# Leak
eqs_leak = """
ileak = gl*(El-v) : amp
"""

# h current for octopus cells
eqs_hcno = """
ihcno = gbarno*(h1*frac + h2*(1-frac))*(Eh-v) : amp
dh1/dt=(hinfno-h1)/tau1 : 1
dh2/dt=(hinfno-h2)/tau2 : 1
hinfno = 1./(1+exp((vu+66.)/7.)) : 1
tau1 = bet1/(qt*0.008*(1+alp1))*ms : ms
tau2 = bet2/(qt*0.0029*(1+alp2))*ms : ms
alp1 = exp(1e-3*3*(vu+50)*9.648e4/(8.315*(273.16+celsius))) : 1
bet1 = exp(1e-3*3*0.3*(vu+50)*9.648e4/(8.315*(273.16+celsius))) : 1
alp2 = exp(1e-3*3*(vu+84)*9.648e4/(8.315*(273.16+celsius))) : 1
bet2 = exp(1e-3*3*0.6*(vu+84)*9.648e4/(8.315*(273.16+celsius))) : 1
"""

eqs = """
dv/dt=(ileak+ina+ikht+iklt+ika+ih+ihcno+I)/C : volt
vu = v/mV : 1 # unitless v
I : amp
"""
eqs += eqs_leak + eqs_ka + eqs_na + eqs_ih + eqs_klt + eqs_kht + eqs_hcno

neuron = NeuronGroup(1, eqs, implicit=True)
neuron.v = El

run(50 * ms) # Go to rest

M = StateMonitor(neuron, ’v’, record=0)
neuron.I = Ipulse

run(100 * ms, report=’text’)

plot(M.times / ms, M[0] / mV)
show()

Example: Plakiewicz_Brette_2010 (frompapers)

Spike threshold variability in single compartment model

Figure 7 from: Platkiewicz J, Brette R (2010). A Threshold Equation for Action Potential Initiation. PLoS Comput
Biol 6(7): e1000850. doi:10.1371/journal.pcbi.1000850

The original HH model is from Traub and Miles 1991, modified by Destexhe et al. 2001, and we shift Na inactivation
to -62 mV. This shift produces threshold variability, but also spikes with variable shapes (unavoidable in a single-
compartment model).
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The script demonstrates that the spike threshold is proportional to the logarithm of h.

from brian import *
from scipy import stats
from brian.library.electrophysiology import *

defaultclock.dt=0.05*ms
duration=500*ms
N=1000 # we simulate 1000 neurons to have more threshold statistics

rectify=lambda x:clip(x,0,inf)*siemens

# Biophysical parameters
#--Passive parameters
area=pi*(105*umetre)**2
C=1*uF
GL=0.0452*msiemens
EL=-80*mV
#--Active fixed parameters
celsius=36
temp=23
q10=2.3
#----Sodium channel parameters
ENa=50*mV
GNa=51.6*msiemens
vTraub_Na=-63*mV #Traub convention
vshift=-20*mV #Inactivation shift (-62 mV instead of -42 mV)
#--------activation
A_alpham=0.32/(ms*mV) #open (V)
A_betam=0.28/(ms*mV) #close (V)
v12_alpham=13*mV #v1/2 for act
v12_betam=40*mV #v1/2 for act
k_alpham=4*mV #act slope
k_betam=5*mV #act slope
#--------inactivation
A_alphah=0.128/ms #inact recov (V)
A_betah=4/ms #inact (V)
v12_alphah=17*mV #v1/2 for inact
v12_betah=40*mV #v1/2 for inact
k_alphah=18*mV #inact tau slope
k_betah=5*mV #inact tau slope
#----Potassium channel parameters
EK=-90*mV
#--------"delay-rectifier"
GK=10*msiemens
vTraub_K=-63*mV
A_alphan=0.032/(ms*mV) #open (V)
A_betan=0.5/ms #close (V)
v12_alphan=15*mV #v1/2 for act
v12_betan=10*mV #v1/2 for act
k_alphan=5*mV #act slope
k_betan=40*mV #act slope
#--------muscarinic
GK_m=0.5*msiemens
A_alphan_m=1e-4/(ms*mV)
A_betan_m=1e-4/(ms*mV)
v12_alphan_m=-30*mV
v12_betan_m=-30*mV
k_alphan_m=9*mV
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k_betan_m=9*mV
# Input parameters
Ee=0*mV
Ei=-75*mV
taue=2.728*ms
taui=10.49*ms
Ge0=0.0121*usiemens*cm**2
Gi0=0.0573*usiemens*cm**2
Sigmae=0.012*usiemens*cm**2
Sigmai=0.0264*usiemens*cm**2
tadj=q10**((celsius-temp)/10)
ge0=Ge0/area
gi0=Gi0/area
sigmae=Sigmae/area
sigmai=Sigmai/area

Traubm=lambda v:v-vTraub_Na
alpham=lambda v:A_alpham*(Traubm(v)-v12_alpham)/(1-exp((v12_alpham-Traubm(v))/k_alpham))
betam=lambda v:-A_betam*(Traubm(v)-v12_betam)/(1-exp(-(v12_betam-Traubm(v))/k_betam))
minf=lambda v:alpham(v)/(alpham(v)+betam(v))
taum=lambda v:1/(alpham(v)+betam(v))
Shift=lambda v:Traubm(v)-vshift
alphah=lambda v:A_alphah*exp((v12_alphah-Shift(v))/k_alphah)
betah=lambda v:A_betah/(1+exp((v12_betah-Shift(v))/k_betah))
hinf=lambda v:alphah(v)/(alphah(v)+betah(v))
tauh=lambda v:1/(alphah(v)+betah(v))
TraubK=lambda v:v-vTraub_K
alphan= lambda v:A_alphan*(TraubK(v)-v12_alphan)/(1-exp((v12_alphan-TraubK(v))/k_alphan))
betan= lambda v:A_betan*exp((v12_betan-TraubK(v))/k_betan)
ninf= lambda v:alphan(v)/(alphan(v)+betan(v))
taun= lambda v:1/(alphan(v)+betan(v))/tadj

eqs="""
dv/dt=(3*GNa*h*m**3*(ENa-v)+(GK*n**4+GK_m*n_m)*(EK-v)+GL*(EL-v)+I)/C : volt

# Sodium activation
m_inf=minf(v) : 1 #minf(v)
tau_m=taum(v) : second
dm/dt=(m_inf-m)/tau_m : 1

# Sodium inactivation
h_inf=hinf(v) : 1
tau_h=tauh(v) : second
dh/dt=(h_inf-h)/tau_h : 1

# Potassium : delay-rectifier
n_inf=ninf(v) : 1
tau_n=taun(v) : second
dn/dt=(n_inf-n)/tau_n : 1
gK=GK*n**4 : siemens

# Potassium : muscarinic
alphan_m=A_alphan_m*(v-v12_alphan_m)/(1-exp((v12_alphan_m-v)/k_alphan_m)) : hertz
betan_m=-A_alphan_m*(v-v12_alphan_m)/(1-exp(-(v12_alphan_m-v)/k_alphan_m)) : hertz
n_minf=alphan_m/(alphan_m+betan_m) : 1
taun_m=1/(alphan_m+betan_m)/tadj : second
dn_m/dt=(n_minf-n_m)/taun_m : 1
gK_m=GK_m*n_m : siemens
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# Fluctuating synaptic conductances
I=rectify(ge)*(Ee-v)+rectify(gi)*(Ei-v) : amp
dge/dt=(1.5*ge0-ge)/taue+1.5*sigmae*(2./taue)**.5*xi : siemens
dgi/dt=(gi0-gi)/taui+2*sigmai*(2./taui)**.5*xi : siemens
gtot=GL+rectify(ge)+rectify(gi)+gK+gK_m : siemens
"""

neurons=NeuronGroup(N,model=eqs,implicit=True)
neurons.v=EL
neurons.m=minf(EL)
neurons.h=hinf(EL)
neurons.n=ninf(EL)
neurons.n_m=0
M=StateMonitor(neurons,’v’,record=True)
Mh=StateMonitor(neurons,’h’,record=True)

run(duration,report=’text’)

# Collect spike thresholds and values of h
threshold,logh=[],[]
valuesv,valuesh=array(M._values),array(Mh._values)
criterion=10*mV/ms # criterion for spike threshold
for i in range(N):

v=valuesv[:,i]
h=valuesh[:,i]
onsets=spike_onsets(v,criterion=defaultclock.dt*criterion,vc=-35*mV)
threshold.extend(v[onsets])
logh.extend(-log(h[onsets]))#+log(g[onsets]))

threshold=array(threshold)/mV
logh=array(logh)/log(10.) # for display

# Voltage trace with spike onsets
subplot(311)
v=valuesv[:,0]
onsets=spike_onsets(v,criterion=defaultclock.dt*criterion,vc=-35*mV)
t=M.times[onsets]/ms
plot(M.times/ms,M[0]/mV,’k’)
plot(t,v[onsets]/mV,’.r’)
xlabel(’t (ms)’)
ylabel(’V (mV)’)

# Distribution of Vm and spike onsets
subplot(312)
hist(threshold,30,normed=1,histtype=’stepfilled’,alpha=0.6,facecolor=’r’)
hist(valuesv.flatten()/mV,100,normed=1,histtype=’stepfilled’,alpha=0.6,facecolor=’k’)
xlabel(’V (mV)’)
xlim(-80,-40)

# Relationship between h and spike threshold
subplot(313)
slope,intercept=3.1,-54. # linear regression for the prediction of threshold
p1,p2=min(logh),max(logh)
plot(logh[:len(logh)/10],threshold[:len(logh)/10],’.k’) # don’t show everything
plot([p1,p2],intercept+slope*array([p1,p2])*log(10.),’r’)
xlabel(’h’)
ylabel(’Threshold (mV)’)
ylim(-55,-40)
xticks([0,-log(5e-1)/log(10),1,-log(5e-2)/log(10)],[1,5e-1,1e-1,5e-2])
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xlim(0,1.5)

show()

Example: Goodman_Brette_2010 (frompapers)

Sound localization with HRTFs

Goodman DF and R Brette (2010). Spike-timing-based computation in sound localization. PLoS Comp Biol 6(11):
e1000993. doi:10.1371/journal.pcbi.1000993.

Simplified version of the “ideal” sound localisation model.

The sound is played at a particular spatial location (indicated on the final plot by a red +). Each location has a
corresponding assembly of neurons, whose summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate of the location by the model.

from brian import *
from brian.hears import *

# Download the IRCAM database
# http://recherche.ircam.fr/equipes/salles/listen/download.html
# and replace this filename with the location you downloaded it to
hrtfdb = IRCAM_LISTEN(r’Z:\HRTF\IRCAM’)
subject = 1002
hrtfset = hrtfdb.load_subject(subject)
# This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices
# Choose a random location for the sound to come from
index = randint(num_indices)
# A sound to test the model with
sound = Sound.whitenoise(500*ms)
# This is the specific HRTF for the chosen location
hrtf = hrtfset.hrtf[index]
# We apply the chosen HRTF to the sound, the output has 2 channels
hrtf_fb = hrtf.filterbank(sound)
# We swap these channels (equivalent to swapping the channels in the
# subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank(hrtf_fb, indexmapping=[1, 0])
# Now we apply all of the possible pairs of HRTFs in the set to these
# swapped channels, which means repeating them num_indices times first
hrtfset_fb = hrtfset.filterbank(Repeat(swapped_channels, num_indices))
# Now we apply cochlear filtering (logically, this comes before the HRTF
# filtering, but since convolution is commutative it is more efficient to
# do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150*Hz, 5*kHz, 40
cf = erbspace(cfmin, cfmax, cfN)
# We repeat each of the HRTFSet filterbank channels cfN times, so that
# for each location we will apply each possible cochlear frequency
gfb = Gammatone(Repeat(hrtfset_fb, cfN),

tile(cf, hrtfset_fb.nchannels))
# Half wave rectification and compression
cochlea = FunctionFilterbank(gfb, lambda x:15*clip(x, 0, Inf)**(1.0/3.0))
# Leaky integrate and fire neuron model
eqs = ’’’
dV/dt = (I-V)/(1*ms)+0.1*xi/(0.5*ms)**.5 : 1
I : 1
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’’’
G = FilterbankGroup(cochlea, ’I’, eqs, reset=0, threshold=1, refractory=5*ms)
# The coincidence detector (cd) neurons
cd = NeuronGroup(num_indices*cfN, eqs, reset=0, threshold=1, clock=G.clock)
# Each CD neuron receives precisely two inputs, one from the left ear and
# one from the right, for each location and each cochlear frequency
C = Connection(G, cd, ’V’)
for i in xrange(num_indices*cfN):

C[i, i] = 0.5 # from right ear
C[i+num_indices*cfN, i] = 0.5 # from left ear

# We want to just count the number of CD spikes
counter = SpikeCounter(cd)
# Run the simulation, giving a report on how long it will take as we run
run(sound.duration, report=’stderr’)
# We take the array of counts, and reshape them into a 2D array which we sum
# across frequencies to get the spike count of each location-specific assembly
count = counter.count
count.shape = (num_indices, cfN)
count = sum(count, axis=1)
count = array(count, dtype=float)/amax(count)
# Our guess of the location is the index of the strongest firing assembly
index_guess = argmax(count)
# Now we plot the output, using the coordinates of the HRTFSet
coords = hrtfset.coordinates
azim, elev = coords[’azim’], coords[’elev’]
scatter(azim, elev, 100*count)
plot([azim[index]], [elev[index]], ’+r’, ms=15, mew=2)
plot([azim[index_guess]], [elev[index_guess]], ’xg’, ms=15, mew=2)
xlabel(’Azimuth (deg)’)
ylabel(’Elevation (deg)’)
xlim(-5, 350)
ylim(-50, 95)
show()

Example: Brette_2004 (frompapers)

Phase locking in leaky integrate-and-fire model

Fig. 2A from: Brette R (2004). Dynamics of one-dimensional spiking neuron models. J Math Biol 48(1): 38-56.

This shows the phase-locking structure of a LIF driven by a sinusoidal current. When the current crosses the threshold
(a<3), the model almost always phase locks (in a measure-theoretical sense).

from brian import *

#defaultclock.dt=0.01*ms # for a more precise picture
N=2000
tau=100*ms
freq=1/tau

eqs=’’’
dv/dt=(-v+a+2*sin(2*pi*t/tau))/tau : 1
a : 1
’’’

neurons=NeuronGroup(N,eqs,threshold=1,reset=0)
neurons.a=linspace(2,4,N)
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run(5*second,report=’text’) # discard the first spikes (wait for convergence)
S=SpikeMonitor(neurons)
run(5*second,report=’text’)

i,t=zip(*S.spikes)
plot((t % tau)/tau,i,’.’)
xlabel(’Spike phase’)
ylabel(’Parameter a’)
yticks([0,N/2,N],[2,3,4])
show()

Example: Rossant_et_al_2011 (frompapers)

Coincidence detection example

Fig. 4 from:

Rossant C, Leijon S, Magnusson AK, Brette R (2011). “Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

Two distant or coincident spikes are injected into a noisy balanced leaky integrate-and-fire neuron. The PSTH of the
neuron in response to these inputs is calculated along with the extra number of spikes in the two cases. This number
is higher for the coincident spikes, showing the sensitivity of a noisy neuron to coincident inputs.

from brian import *
import matplotlib.patches as patches
import matplotlib.path as path

def histo(bins, cc, ax):
# get the corners of the rectangles for the histogram
left = array(bins[:-1])
right = array(bins[1:])
bottom = zeros(len(left))
top = bottom + cc

# we need a (numrects x numsides x 2) numpy array for the path helper
# function to build a compound path
XY = array([[left,left,right,right], [bottom,top,top,bottom]]).T

# get the Path object
barpath = path.Path.make_compound_path_from_polys(XY)

# make a patch out of it
patch = patches.PathPatch(barpath, facecolor=’blue’, edgecolor=’gray’, alpha=0.8)
ax.add_patch(patch)

# update the view limits
ax.set_xlim(left[0], right[-1])
ax.set_ylim(bottom.min(), top.max())

# neuron parameters
theta = -55*mV
vmean = -65*mV
taum = 5*ms
taue = 3*ms
taun = 15*ms
sigma = 4*mV
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# input times
t1 = 100*ms
t2 = 120*ms

# simulation duration
dur = 200*ms

# number of neuron
N = 10000
bin = 2*ms

# EPSP size
int_EPSP=taue
int_EPSP2=taue*taue/(2*(taum+taue))
max_EPSP=(taum/taue)**(taum/(taue-taum))
we = 3.0*mV/max_EPSP

# model equations
eqs = ’’’
V=V0+noise : volt
dV0/dt=(-V0+psp)/taum : volt
dpsp/dt=-psp/taue : volt
dnoise/dt=(vmean-noise)/taun+sigma*(2./taun)**.5*xi : volt
’’’
threshold = ’V>theta’
reset = vmean

# initialization of the NeuronGroup
reinit_default_clock()
group = NeuronGroup(2*N, model=eqs, reset=reset, threshold=threshold)
group.V0 = group.psp = 0*volt
group.noise = vmean + sigma * randn(2*N)

# input spikes
input_spikes = [(0, t1), (0, t2), (1, t1)]
input = SpikeGeneratorGroup(2, array(input_spikes))

# connections
C = Connection(input, group, ’psp’)
C.connect_full(input[0], group[:N], weight=we)
C.connect_full(input[1], group[N:], weight=2*we)

# monitors
prM1 = PopulationRateMonitor(group[:N], bin=bin)
prM2 = PopulationRateMonitor(group[N:], bin=bin)

# launch simulation
run(dur)

# PSTH plot
figure(figsize=(10,10))
prMs = [prM1, prM2]
for i in [0,1]:

prM = prMs[i]
r = prM.rate[:-1]*bin
m = mean(r[:len(r)/2])

ax = subplot(211+i)
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histo(prM.times, r, ax)
plot([0,dur],[m,m],’--r’)
title("%.2f extra spikes" % sum(r[t1/bin:(t2+20*ms)/bin]-m))
xlim(.05, .2)
ylim(0, .125)

show()

Example: Wang_Buszaki_1996 (frompapers)

Wang-Buszaki model

J Neurosci. 1996 Oct 15;16(20):6402-13. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal
network model. Wang XJ, Buzsaki G.

Note that implicit integration (exponential Euler) cannot be used, and therefore simulation is rather slow.

from brian import *

defaultclock.dt=0.01*ms

Cm=1*uF # /cm**2
Iapp=2*uA
gL=0.1*msiemens
EL=-65*mV
ENa=55*mV
EK=-90*mV
gNa=35*msiemens
gK=9*msiemens

eqs=’’’
dv/dt=(-gNa*m**3*h*(v-ENa)-gK*n**4*(v-EK)-gL*(v-EL)+Iapp)/Cm : volt
m=alpham/(alpham+betam) : 1
alpham=-0.1/mV*(v+35*mV)/(exp(-0.1/mV*(v+35*mV))-1)/ms : Hz
betam=4*exp(-(v+60*mV)/(18*mV))/ms : Hz
dh/dt=5*(alphah*(1-h)-betah*h) : 1
alphah=0.07*exp(-(v+58*mV)/(20*mV))/ms : Hz
betah=1./(exp(-0.1/mV*(v+28*mV))+1)/ms : Hz
dn/dt=5*(alphan*(1-n)-betan*n) : 1
alphan=-0.01/mV*(v+34*mV)/(exp(-0.1/mV*(v+34*mV))-1)/ms : Hz
betan=0.125*exp(-(v+44*mV)/(80*mV))/ms : Hz
’’’

neuron=NeuronGroup(1,eqs)
neuron.v=-70*mV
neuron.h=1
M=StateMonitor(neuron,’v’,record=0)

run(100*ms,report=’text’)

plot(M.times/ms,M[0]/mV)
show()
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Example: Vogels_et_al_2011 (frompapers)

Inhibitory synaptic plasticity in a recurrent network model

(F. Zenke, 2011) (from the 2012 Brian twister)

Adapted from: Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory Plasticity Balances
Excitation and Inhibition in Sensory Pathways and Memory Networks. Science (November 10, 2011).

from brian import *

# ###########################################
# Defining network model parameters
# ###########################################

NE = 8000 # Number of excitatory cells
NI = NE/4 # Number of inhibitory cells

w = 1.*nS # Basic weight unit
tau_ampa = 5.0*ms # Glutamatergic synaptic time constant
tau_gaba = 10.0*ms # GABAergic synaptic time constant
epsilon = 0.02 # Sparseness of synaptic connections

eta = 1e-2 # Learning rate
tau_stdp = 20*ms # STDP time constant

simtime = 10*second # Simulation time

# ###########################################
# Neuron model
# ###########################################

gl = 10.0*nsiemens # Leak conductance
el = -60*mV # Resting potential
er = -80*mV # Inhibitory reversal potential
vt = -50.*mV # Spiking threshold
memc = 200.0*pfarad # Membrane capacitance
bgcurrent = 200*pA # External current

eqs_neurons=’’’
dv/dt=(-gl*(v-el)-(g_ampa*w*v+g_gaba*(v-er)*w)+bgcurrent)/memc : volt
dg_ampa/dt = -g_ampa/tau_ampa : 1
dg_gaba/dt = -g_gaba/tau_gaba : 1
’’’

# ###########################################
# Initialize neuron group
# ###########################################

neurons=NeuronGroup(NE+NI,model=eqs_neurons,threshold=vt,reset=el,refractory=5*ms)
Pe=neurons.subgroup(NE)
Pi=neurons.subgroup(NI)

# ###########################################
# Connecting the network
# ###########################################

con_e = Connection(Pe,neurons,’g_ampa’,weight=0.3,sparseness=epsilon)
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con_ie = Connection(Pi,Pe,’g_gaba’,weight=1e-10,sparseness=epsilon)
con_ii = Connection(Pi,Pi,’g_gaba’,weight=3,sparseness=epsilon)

# ###########################################
# Setting up monitors
# ###########################################

sm = SpikeMonitor(Pe)

# ###########################################
# Run without plasticity
# ###########################################

run(1*second)

# ###########################################
# Inhibitory Plasticity
# ###########################################

alpha = 3*Hz*tau_stdp*2 # Target rate parameter
gmax = 100 # Maximum inhibitory weight

eqs_stdp_inhib = ’’’
dA_pre/dt=-A_pre/tau_stdp : 1
dA_post/dt=-A_post/tau_stdp : 1
’’’

stdp_ie = STDP(con_ie, eqs=eqs_stdp_inhib, pre=’A_pre+=1.; w+=(A_post-alpha)*eta;’,
post=’A_post+=1.; w+=A_pre*eta;’, wmax=gmax)

# ###########################################
# Run with plasticity
# ###########################################

run(simtime-1*second,report=’text’)

# ###########################################
# Make plots
# ###########################################

subplot(211)
raster_plot(sm,ms=1.)
title("Before")
xlabel("")
xlim(0.8*1e3,1*1e3)
subplot(212)
raster_plot(sm,ms=1.)
title("After")
xlim((simtime-0.2*second)*1e3,simtime*1e3)
show()

Example: Diesmann_et_al_1999_longer (frompapers)

Implementation of synfire chain from Diesmann et al. 1999

Dan Goodman - Dec. 2007
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#import brian_no_units
from brian import *
import time

from brian.library.IF import *
from brian.library.synapses import *

def minimal_example():
# Neuron model parameters
Vr = -70 * mV
Vt = -55 * mV
taum = 10 * ms
taupsp = 0.325 * ms
weight = 4.86 * mV
# Neuron model
equations = Equations(’’’

dV/dt = (-(V-Vr)+x)*(1./taum) : volt
dx/dt = (-x+y)*(1./taupsp) : volt
dy/dt = -y*(1./taupsp)+25.27*mV/ms+(39.24*mV/ms**0.5)*xi : volt
’’’)

# Neuron groups
P = NeuronGroup(N=1000, model=equations,

threshold=Vt, reset=Vr, refractory=1 * ms)
# P = NeuronGroup(N=1000, model=(dV,dx,dy),init=(0*volt,0*volt,0*volt),
# threshold=Vt,reset=Vr,refractory=1*ms)

Pinput = PulsePacket(t=50 * ms, n=85, sigma=1 * ms)
# The network structure
Pgp = [ P.subgroup(100) for i in range(10)]
C = Connection(P, P, ’y’)
for i in range(9):

C.connect_full(Pgp[i], Pgp[i + 1], weight)
Cinput = Connection(Pinput, P, ’y’)
Cinput.connect_full(Pinput, Pgp[0], weight)
# Record the spikes
Mgp = [SpikeMonitor(p, record=True) for p in Pgp]
Minput = SpikeMonitor(Pinput, record=True)
monitors = [Minput] + Mgp
# Setup the network, and run it
P.V = Vr + rand(len(P)) * (Vt - Vr)
run(100 * ms)
# Plot result
raster_plot(showgrouplines=True, *monitors)
show()

# DEFAULT PARAMATERS FOR SYNFIRE CHAIN
# Approximates those in Diesman et al. 1999
model_params = Parameters(

# Simulation parameters
dt=0.1 * ms,
duration=100 * ms,
# Neuron model parameters
taum=10 * ms,
taupsp=0.325 * ms,
Vt= -55 * mV,
Vr= -70 * mV,
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abs_refrac=1 * ms,
we=34.7143,
wi= -34.7143,
psp_peak=0.14 * mV,
# Noise parameters
noise_neurons=20000,
noise_exc=0.88,
noise_inh=0.12,
noise_exc_rate=2 * Hz,
noise_inh_rate=12.5 * Hz,
computed_model_parameters="""
noise_mu = noise_neurons * (noise_exc * noise_exc_rate - noise_inh * noise_inh_rate ) * psp_peak * we
noise_sigma = (noise_neurons * (noise_exc * noise_exc_rate + noise_inh * noise_inh_rate ))**.5 * psp_peak * we
"""
)

# MODEL FOR SYNFIRE CHAIN
# Excitatory PSPs only
def Model(p):

equations = Equations(’’’
dV/dt = (-(V-p.Vr)+x)*(1./p.taum) : volt
dx/dt = (-x+y)*(1./p.taupsp) : volt
dy/dt = -y*(1./p.taupsp)+25.27*mV/ms+(39.24*mV/ms**0.5)*xi : volt
’’’)

return Parameters(model=equations, threshold=p.Vt, reset=p.Vr, refractory=p.abs_refrac)

default_params = Parameters(
# Network parameters
num_layers=10,
neurons_per_layer=100,
neurons_in_input_layer=100,
# Initiating burst parameters
initial_burst_t=50 * ms,
initial_burst_a=85,
initial_burst_sigma=1 * ms,
# these values are recomputed whenever another value changes
computed_network_parameters="""
total_neurons = neurons_per_layer * num_layers
""",
# plus we also use the default model parameters

** model_params
)

# DEFAULT NETWORK STRUCTURE
# Single input layer, multiple chained layers
class DefaultNetwork(Network):

def __init__(self, p):
# define groups
chaingroup = NeuronGroup(N=p.total_neurons, **Model(p))
inputgroup = PulsePacket(p.initial_burst_t, p.neurons_in_input_layer, p.initial_burst_sigma)
layer = [ chaingroup.subgroup(p.neurons_per_layer) for i in range(p.num_layers) ]
# connections
chainconnect = Connection(chaingroup, chaingroup, 2)
for i in range(p.num_layers - 1):

chainconnect.connect_full(layer[i], layer[i + 1], p.psp_peak * p.we)
inputconnect = Connection(inputgroup, chaingroup, 2)
inputconnect.connect_full(inputgroup, layer[0], p.psp_peak * p.we)
# monitors
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chainmon = [SpikeMonitor(g, True) for g in layer]
inputmon = SpikeMonitor(inputgroup, True)
mon = [inputmon] + chainmon
# network
Network.__init__(self, chaingroup, inputgroup, chainconnect, inputconnect, mon)
# add additional attributes to self
self.mon = mon
self.inputgroup = inputgroup
self.chaingroup = chaingroup
self.layer = layer
self.params = p

def prepare(self):
Network.prepare(self)
self.reinit()

def reinit(self, p=None):
Network.reinit(self)
q = self.params
if p is None: p = q
self.inputgroup.generate(p.initial_burst_t, p.initial_burst_a, p.initial_burst_sigma)
self.chaingroup.V = q.Vr + rand(len(self.chaingroup)) * (q.Vt - q.Vr)

def run(self):
Network.run(self, self.params.duration)

def plot(self):
raster_plot(ylabel="Layer", title="Synfire chain raster plot",

color=(1, 0, 0), markersize=3,
showgrouplines=True, spacebetweengroups=0.2, grouplinecol=(0.5, 0.5, 0.5),

*self.mon)

def estimate_params(mon, time_est):
# Quick and dirty algorithm for the moment, for a more decent algorithm
# use leastsq algorithm from scipy.optimize.minpack to fit const+Gaussian
# http://www.scipy.org/doc/api_docs/SciPy.optimize.minpack.html#leastsq
i, times = zip(*mon.spikes)
times = array(times)
times = times[abs(times - time_est) < 15 * ms]
if len(times) == 0:

return (0, 0 * ms)
better_time_est = times.mean()
times = times[abs(times - time_est) < 5 * ms]
if len(times) == 0:

return (0, 0 * ms)
return (len(times), times.std())

def single_sfc():
net = DefaultNetwork(default_params)
net.run()
net.plot()

def state_space(grid, neuron_multiply, verbose=True):
amin = 0
amax = 100
sigmamin = 0. * ms
sigmamax = 3. * ms
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params = default_params()
params.num_layers = 1
params.neurons_per_layer = params.neurons_per_layer * neuron_multiply

net = DefaultNetwork(params)

i = 0
# uncomment these 2 lines for TeX labels
#import pylab
#pylab.rc_params.update({’text.usetex’: True})
if verbose:

print "Completed:"
start_time = time.time()
figure()
for ai in range(grid + 1):

for sigmai in range(grid + 1):
a = int(amin + (ai * (amax - amin)) / grid)
if a > amax: a = amax
sigma = sigmamin + sigmai * (sigmamax - sigmamin) / grid
params.initial_burst_a, params.initial_burst_sigma = a, sigma
net.reinit(params)
net.run()
(newa, newsigma) = estimate_params(net.mon[-1], params.initial_burst_t)
newa = float(newa) / float(neuron_multiply)
col = (float(ai) / float(grid), float(sigmai) / float(grid), 0.5)
plot([sigma / ms, newsigma / ms], [a, newa], color=col)
plot([sigma / ms], [a], marker=’.’, color=col, markersize=15)
i += 1
if verbose:

print str(int(100. * float(i) / float((grid + 1) ** 2))) + "%",
if verbose:

print
if verbose:

print "Evaluation time:", time.time() - start_time, "seconds"
xlabel(r’$\sigma$ (ms)’)
ylabel(’a’)
title(’Synfire chain state space’)
axis([sigmamin / ms, sigmamax / ms, amin, amax])

minimal_example()
#print ’Computing SFC with multiple layers’
#single_sfc()
#print ’Plotting SFC state space’
#state_space(3,1)
#state_space(8,10)
#state_space(10,50)
#state_space(10,150)
#show()

Example: Diesmann_et_al_1999 (frompapers)

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402,
529-533.
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from brian import *
# Neuron model parameters
Vr = -70 * mV
Vt = -55 * mV
taum = 10 * ms
taupsp = 0.325 * ms
weight = 4.86 * mV
# Neuron model
eqs = Equations(’’’
dV/dt=(-(V-Vr)+x)*(1./taum) : volt
dx/dt=(-x+y)*(1./taupsp) : volt
dy/dt=-y*(1./taupsp)+25.27*mV/ms+\

(39.24*mV/ms**0.5)*xi : volt
’’’)
# Neuron groups
P = NeuronGroup(N=1000, model=eqs,

threshold=Vt, reset=Vr, refractory=1 * ms)
Pinput = PulsePacket(t=50 * ms, n=85, sigma=1 * ms)
# The network structure
Pgp = [ P.subgroup(100) for i in range(10)]
C = Connection(P, P, ’y’)
for i in range(9):

C.connect_full(Pgp[i], Pgp[i + 1], weight)
Cinput = Connection(Pinput, Pgp[0], ’y’)
Cinput.connect_full(weight=weight)
# Record the spikes
Mgp = [SpikeMonitor(p) for p in Pgp]
Minput = SpikeMonitor(Pinput)
monitors = [Minput] + Mgp
# Setup the network, and run it
P.V = Vr + rand(len(P)) * (Vt - Vr)
run(100 * ms)
# Plot result
raster_plot(showgrouplines=True, *monitors)
show()

Example: Platkiewicz_Brette_2011 (frompapers)

Slope-threshold relationship with noisy inputs, in the adaptive threshold model

Fig. 5E,F from: Platkiewicz J and R Brette (2011). Impact of Fast Sodium Channel Inactivation on Spike Threshold
Dynamics and Synaptic Integration. PLoS Comp Biol 7(5): e1001129. doi:10.1371/journal.pcbi.1001129

from brian import *
from scipy import stats,optimize
from scipy.stats import linregress

rectify=lambda x:clip(x/volt,0,Inf)*volt

N=200 # 200 neurons to get more statistics, only one is shown
duration=1*second
#--Biophysical parameters
ENa=60*mV
EL=-70*mV
vT=-55*mV
Vi=-63*mV
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tauh=5*ms
tau=5*ms
ka=5*mV
ki=6*mV
a=ka/ki
tauI=5*ms
mu=15*mV
sigma=6*mV/sqrt(tauI/(tauI+tau))

#--Theoretical prediction for the slope-threshold relationship (approximation: a=1+epsilon)
thresh=lambda slope,a: Vi-slope*tauh*log(1+(Vi-vT/a)/(slope*tauh))
#-----Exact calculation of the slope-threshold relationship
thresh_ex=lambda s: optimize.fsolve(lambda th: a*s*tauh*exp((Vi-th)/(s*tauh))-th*(1-a)-a*(s*tauh+Vi)+vT,thresh(s,a))*volt

eqs="""
dv/dt=(EL-v+mu+sigma*I)/tau : volt
dtheta/dt=(vT+a*rectify(v-Vi)-theta)/tauh : volt
dI/dt=-I/tauI+(2/tauI)**.5*xi : 1 # Ornstein-Uhlenbeck
"""
neurons=NeuronGroup(N,eqs,threshold="v>theta",reset=’v=EL’,refractory=5*ms)
neurons.v=EL
neurons.theta=vT
neurons.I=0
S=SpikeMonitor(neurons)
M=StateMonitor(neurons,’v’,record=True)
Mt=StateMonitor(neurons,’theta’,record=0)

run(duration,report=’text’)

# Linear regression gives depolarization slope before spikes
tx=M.times[(M.times>0) & (M.times<1.5*tauh)]
slope,threshold=[],[]
v=array(M._values)
for (i,t) in S.spikes:

ind=(M.times<t) & (M.times>t-tauh)
mx=v[:,i][ind]
s,_,_,_,_=linregress(tx[:len(mx)],mx)
slope.append(s)
threshold.append(mx[-1])

# Figure
M.insert_spikes(S) # displays spikes on the trace
subplot(221)
ind=M.times<500*ms
plot(M.times[ind]/ms,M[0][ind]/mV,’k’)
plot(Mt.times[ind]/ms,Mt[0][ind]/mV,’r’)
xlabel(’Time (ms)’)
ylabel(’Voltage (mV)’)

subplot(222)
plot(slope,array(threshold)/mV,’r.’)
sx=linspace(0.5*volt/second,4*volt/second,100)
t=array([thresh_ex(s*volt/second) for s in sx])
plot(sx,t/mV,’k’)
xlim(0.5,4)
xlabel(’Depolarization slope (ms)’)
ylabel(’Threshold (mV/ms)’)
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show()

Example: Sturzl_et_al_2000 (frompapers)

Adapted from Theory of Arachnid Prey Localization W. Sturzl, R. Kempter, and J. L. van Hemmen PRL 2000

Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

from brian import *

# Parameters
degree = 2 * pi / 360.
duration = 500 * ms
R = 2.5 * cm # radius of scorpion
vr = 50 * meter / second # Rayleigh wave speed
phi = 144 * degree # angle of prey
A = 250 * Hz
deltaI = .7 * ms # inhibitory delay
gamma = (22.5 + 45 * arange(8)) * degree # leg angle
delay = R / vr * (1 - cos(phi - gamma)) # wave delay

# Wave (vector w)
t = arange(int(duration / defaultclock.dt) + 1) * defaultclock.dt
Dtot = 0.
w = 0.
for f in range(150, 451):

D = exp(-(f - 300) ** 2 / (2 * (50 ** 2)))
xi = 2 * pi * rand()
w += 100 * D * cos(2 * pi * f * t + xi)
Dtot += D

w = .01 * w / Dtot

# Rates from the wave
def rates(t):

return w[array(t / defaultclock.dt, dtype=int)]

# Leg mechanical receptors
tau_legs = 1 * ms
sigma = .01
eqs_legs = """
dv/dt=(1+rates(t-d)-v)/tau_legs+sigma*(2./tau_legs)**.5*xi:1
d : second
"""
legs = NeuronGroup(8, model=eqs_legs, threshold=1, reset=0, refractory=1 * ms)
legs.d = delay
spikes_legs = SpikeCounter(legs)

# Command neurons
tau = 1 * ms
taus = 1 * ms
wex = 7
winh = -2
eqs_neuron = ’’’
dv/dt=(x-v)/tau : 1
dx/dt=(y-x)/taus : 1 # alpha currents
dy/dt=-y/taus : 1
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’’’
neurons = NeuronGroup(8, model=eqs_neuron, threshold=1, reset=0)
synapses_ex = IdentityConnection(legs, neurons, ’y’, weight=wex)
synapses_inh = Connection(legs, neurons, ’y’, delay=deltaI)
for i in range(8):

synapses_inh[i, (4 + i - 1) % 8] = winh
synapses_inh[i, (4 + i) % 8] = winh
synapses_inh[i, (4 + i + 1) % 8] = winh

spikes = SpikeCounter(neurons)

run(duration)
nspikes = spikes.count
x = sum(nspikes * exp(gamma * 1j))
print "Angle (deg):", arctan(imag(x) / real(x)) / degree
polar(concatenate((gamma, [gamma[0] + 2 * pi])), concatenate((nspikes, [nspikes[0]])) / duration)
show()

Example: Guetig_Sompolinsky_2009 (frompapers)

Implementation of the basic model (no speech recognition, no learning) described in: Gutig and Sompolinsky (2009):
“Time-Warp-Invariant Neuronal Processing” PLoS Biology, Vol. 7 (7), e1000141

from brian import *

class TimeWarpModel(object):
’’’
A simple neuron model for testing the "time-warp invariance" with
conductance based or current based synapses. The neuron receives balanced
excitatory and inhibitory input from a random spike train. The same spike
train can be fed into the model with different time warps.
’’’
def __init__(self, conductance_based=True):

’’’
Create a new model with conductance based or current based synapses
’’’
# Model parameters
E_e = 5
E_i = -1
E_L = 0
g_L = 1/(100.0*msecond)
tau_syn = 1*ms
N_ex = 250
N_inh = 250
self.N = N_ex + N_inh

# Equations
if conductance_based:

eqs = ’’’
dV/dt = -(V - E_L) * g_L - I_syn : 1
I_syn = I_ge + I_gi : second**-1
I_ge = (V - E_e) * g_e : second**-1
I_gi = (V - E_i) * g_i : second**-1
dg_e/dt = -g_e/tau_syn : second**-1
dg_i/dt = -g_i/tau_syn : second**-1
’’’

else:
eqs = ’’’
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dV/dt = -(V - E_L) * g_L - I_syn : 1
I_syn = -5 * g_e + g_i : second**-1
dg_e/dt = -g_e/tau_syn : second**-1
dg_i/dt = -g_i/tau_syn : second**-1
’’’

# for simpler voltage traces: no spiking
neuron = NeuronGroup(1, model=eqs, threshold=None)

# every input neuron fires once in a random interval
self.unwarped_spiketimes = [(i, t * 250 * ms) for i, t in

zip(range(0, self.N), rand(self.N))]

# final spiketimes will be set in the run function
self.input = SpikeGeneratorGroup(self.N, [])

e_input = self.input.subgroup(N_ex)
i_input = self.input.subgroup(N_inh)
e_conn = Connection(e_input, neuron, ’g_e’,

weight=6 / (N_ex * tau_syn))
i_conn = Connection(i_input, neuron, ’g_i’,

weight=5 * 6 / (N_ex * tau_syn))

# record membrane potential
self.monitor = StateMonitor(neuron, varname=’V’, record=True)

# putting everything together
self.net = Network(neuron, self.input, e_conn, i_conn, self.monitor)

def run(self, beta=1.0):
’’’
Run the network with the original spike train warped by a certain factor
beta. Beta > 1 corresponds to an extended and beta < 1 to a shrinked
input spike train.
’’’
self.net.reinit()

#warp spike train in time
self.input.spiketimes = [(i, beta*t)

for i, t in self.unwarped_spiketimes]
self.net.run(beta * 250*ms)

#Return the voltage trace
return (self.monitor.times, self.monitor[0])

if __name__ == ’__main__’:
cond_model = TimeWarpModel(True)
curr_model = TimeWarpModel(False)
N = cond_model.N

# #########################################################################
# Reproduce Fig. 2 from Gütig and Sompolinsky (2009)
# #########################################################################
beta = 2.0
times1, v1 = cond_model.run(beta=1.0)
times2, v2 = cond_model.run(beta=beta)
maxtime = 250 * beta
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subplot(4, 1, 1)
(neurons, times) = zip(*cond_model.unwarped_spiketimes)
plot(array(times) / ms, neurons, ’g.’)
axis([0, maxtime, 0, N])
xticks([])
yticks([])
title(’Time-warp-invariant voltage traces (conductance-based)’)

subplot(4, 1, 2)
plot(times1 / ms, v1, ’g’)
axis([0, maxtime, -1.5, 1.5])
xticks([])
yticks([])

subplot(4, 1, 3)
plot(array(times) * beta / ms, neurons, ’b.’)
axis([0, maxtime, 0, N])
xticks([])
yticks([1, 500])

subplot(4, 1, 4)
plot(times2 / ms, v2, ’b’)
plot(times1 / ms * beta, v1, ’g’)
axis([0, maxtime, -1.5, 1.5])
xlabel(’Time (ms)’)
xticks([0, 250, 500])
yticks([-1, 1])
show()
# #########################################################################
# Reproduce Fig. 3(C) from Gütig and Sompolinsky (2009), but for random
# spike trains and not in a speech recognition task
# #########################################################################

betas = arange(0.2, 3.1, 0.1)
#betas = array([1.0, 2.0])
cond_results = []
curr_results = []
for beta in betas:

print ’Testing warp factor %.1f’ % beta
cond_results.append(cond_model.run(beta))
curr_results.append(curr_model.run(beta))

figure()
colors = mpl.cm.gist_earth((betas - betas[0]) / (betas[-1] - betas[0]))
lookup = dict(zip(betas, colors))
for beta, cond_result, curr_result in zip(betas, cond_results,

curr_results):
times_cond, v_cond = cond_result
times_curr, v_curr = curr_result
subplot(1,2,1)
plot(times_cond / ms / beta, v_cond, color=lookup[beta])
axis([0, 250, -1.5, 1.5])
subplot(1,2,2)
plot(times_curr / ms / beta, v_curr, color=lookup[beta])
axis([0, 250, -1.5, 1.5])

subplot(1,2,1)
title(’conductance based’)
subplot(1,2,2)
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title(’current based’)
show()

Example: Brette_Guigon_2003 (frompapers)

Reliability of spike timing

Adapted from Fig. 10D,E of Brette R and E Guigon (2003). Reliability of Spike Timing Is a General Property of
Spiking Model Neurons. Neural Computation 15, 279-308.

This shows that reliability of spike timing is a generic property of spiking neurons, even those that are not leaky. This
is a non-physiological model which can be leaky or anti-leaky depending on the sign of the input I.

All neurons receive the same fluctuating input, scaled by a parameter p that varies across neurons. This shows:

1. reproducibility of spike timing

2. robustness with respect to deterministic changes (parameter)

3. increased reproducibility in the fluctuation-driven regime (input crosses the threshold)

from brian import *

N=500
tau=33*ms
taux=20*ms
sigma=0.02

eqs_input=’’’
B=2./(1+exp(-2*x))-1 : 1
dx/dt=-x/taux+(2/taux)**.5*xi : 1
’’’

eqs=’’’
dv/dt=(v*I+1)/tau + sigma*(2/tau)**.5*xi : 1
I=0.5+3*p*B : 1
B : 1
p : 1
’’’

input=NeuronGroup(1,eqs_input)
neurons=NeuronGroup(N,eqs,threshold=1,reset=0)
neurons.p=linspace(0,1,N)
neurons.v=rand(N)
neurons.B=linked_var(input,’B’)

M=StateMonitor(input,’B’,record=0)
S=SpikeMonitor(neurons)

run(1000*ms)

subplot(211) # The input
plot(M.times/ms,M[0])
subplot(212)
raster_plot(S)
plot([0,1000],[250,250],’r’)
show()
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Example: Muller_et_al_2011 (frompapers)

Interplay of STDP and input oscillations

Figure 4 from: Muller L, Brette R and Gutkin B (2011) Spike-timing dependent plasticity and feed-forward input
oscillations produce precise and invariant spike phase-locking. Front. Comput. Neurosci. 5:45. doi: 10.3389/fn-
com.2011.00045

Description: In this simulation, a group of IF neurons is given a tonic DC input and a tonic AC input. The DC
input is mediated by current injection (neurons.I, line 62), and the AC input is mediated by Poisson processes whose
rate parameters are oscillating in time. Each neuron in the group is given a different DC input, ensuring a unique
initial phase. After two seconds of simulation (to integrate out any initial transients), the STDP rule is turned on
(ExponentialSTDP, line 68), and the population of neurons converges to the theoretically predicted fixed point. As
there is some noise in the phase due to the random inputs, the simulation is averaged over trials (50 in Figure 4, though
10 trials should be fine for testing).

The trials run in parallel on all available processors (10 trials take about 2 minutes on a modern PC).

### IMPORTS
from brian import *
import multiprocessing

### PARAMETERS
N=5000
M=10
taum=33*ms
tau_pre=20*ms
tau_post=tau_pre
Ee=0*mV
vt=-54*mV
vr=-70*mV
El=-70*mV
taue=5*ms
f=20*Hz
theta_period = 1/f
Rm=200*Mohm
a = linspace(51,65,num=M)
weights = .001
ratio=1.50
dA_pre=.01
dA_post=.01*ratio
trials=10

### SIMULATION LOOP
def trial(n): # n is the trial number

reinit_default_clock()
clear(True)

eqs_neurons=’’’
dv/dt=((ge*(Ee-vr))+Rm*I+(El-v))/taum : volt
dge/dt=-ge/taue : 1
I : amp
’’’

inputs = PoissonGroup(N,rates=lambda t:((.5-.5*cos(2*pi*f*t)))*10*Hz)
neurons=NeuronGroup(M,model=eqs_neurons,threshold=vt,reset=vr)
neurons.I = a*pA
synapses=Connection(inputs,neurons,’ge’,weight=weights)
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neurons.v=vr

S = SpikeMonitor(neurons)
run(2*second)
stdp=ExponentialSTDP(synapses,tau_pre,tau_post,dA_pre,-dA_post,wmax=10*weights,interactions=’all’,update=’additive’)
run(5*second)

phase=zeros((M,200))
for b in range(0,M):

tmp_phase=(S[b]%theta_period)*(360/theta_period)
phase[b,range(0,len(tmp_phase))] = tmp_phase

return phase

if __name__==’__main__’: # This is very important on Windows, otherwise the machine crashes!
phase = zeros((M,200,trials))

print "This will take approximately 2 minutes."
pool=multiprocessing.Pool() # uses all available processors b
results=pool.map(trial,range(trials))
for i in range(trials):

phase[:,:,i]=results[i]

### PLOTTING
for b in range(0,M):

m = mean(phase[b,:,:],axis=1)
st = std(phase[b,:,:],axis=1)/sqrt(trials)
errorbar(range(0,135), m[range(0,135)], yerr=st[range(0,135)], xerr=None,

fmt=’-’, ecolor=None, elinewidth=None, capsize=3,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False)

title(’STDP + Oscillations Simulation’)
xlabel(’Spike Number’)
ylabel(’Spike Phase (deg)’)
xlim([0, 135])
ylim([140, 280])

show()

Example: Rossant_et_al_2011bis (frompapers)

Distributed synchrony example

Fig. 14 from:

Rossant C, Leijon S, Magnusson AK, Brette R (2011). “Sensitivity of noisy neurons to coincident inputs”.
Journal of Neuroscience, 31(47).

5000 independent E/I Poisson inputs are injected into a leaky integrate-and-fire neuron. Synchronous events, following
an independent Poisson process at 40 Hz, are considered, where 15 E Poisson spikes are randomly shifted to be
synchronous at those events. The output firing rate is then significantly higher, showing that the spike timing of less
than 1% of the excitatory synapses have an important impact on the postsynaptic firing.

from brian import *

# neuron parameters
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theta = -55*mV
El = -65*mV
vmean = -65*mV
taum = 5*ms
taue = 3*ms
taui = 10*ms
eqs = Equations("""

dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
""")

# input parameters
p = 15
ne = 4000
ni = 1000
lambdac = 40*Hz
lambdae = lambdai = 1*Hz

# synapse parameters
we = .5*mV/(taum/taue)**(taum/(taue-taum))
wi = (vmean-El-lambdae*ne*we*taue)/(lambdae*ni*taui)

# NeuronGroup definition
group = NeuronGroup(N=2, model=eqs, reset=El, threshold=theta, refractory=5*ms)
group.v = El
group.ge = group.gi = 0

# independent E/I Poisson inputs
p1 = PoissonInput(group[0], N=ne, rate=lambdae, weight=we, state=’ge’)
p2 = PoissonInput(group[0], N=ni, rate=lambdai, weight=wi, state=’gi’)

# independent E/I Poisson inputs + synchronous E events
p3 = PoissonInput(group[1], N=ne, rate=lambdae-(p*1.0/ne)*lambdac, weight=we, state=’ge’)
p4 = PoissonInput(group[1], N=ni, rate=lambdai, weight=wi, state=’gi’)
p5 = PoissonInput(group[1], N=1, rate=lambdac, weight=p*we, state=’ge’)

# run the simulation
reinit_default_clock()
M = SpikeMonitor(group)
SM = StateMonitor(group, ’v’, record=True)
run(1*second)

# plot trace and spikes
for i in [0,1]:

spikes = M.spiketimes[i]-.0001
val = SM.values[i]
subplot(2,1,i+1)
plot(SM.times, val)
plot(tile(spikes, (2,1)),

vstack((val[array(spikes*10000, dtype=int)],
zeros(len(spikes)))), ’b’)

title("%s: %d spikes/second" % (["uncorrelated inputs", "correlated inputs"][i],
len(M.spiketimes[i])))

show()
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Example: Touboul_Brette_2008 (frompapers)

Chaos in the AdEx model

Fig. 8B from: Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-
fire model. Biological Cybernetics 99(4-5):319-34.

This shows the bifurcation structure when the reset value is varied (vertical axis shows the values of w at spike times
for a given a reset value Vr).

from brian import *

defaultclock.dt=0.01*ms

C=281*pF
gL=30*nS
EL=-70.6*mV
VT=-50.4*mV
DeltaT=2*mV
tauw=40*ms
a=4*nS
b=0.08*nA
I=.8*nA
Vcut=VT+5*DeltaT # practical threshold condition
N=500

eqs="""
dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
dw/dt=(a*(vm-EL)-w)/tauw : amp
Vr:volt
"""

neuron=NeuronGroup(N,model=eqs,threshold=Vcut,reset="vm=Vr;w+=b")
neuron.vm=EL
neuron.w=a*(neuron.vm-EL)
neuron.Vr=linspace(-48.3*mV,-47.7*mV,N) # bifurcation parameter

run(3*second,report=’text’) # we discard the first spikes

M=StateSpikeMonitor(neuron,("Vr","w")) # record Vr and w at spike times
run(2*second,report=’text’)

Vr,w=M.values("Vr"),M.values("w")

figure()
plot(Vr/mV,w/nA,’.k’)
xlabel(’Vr (mV)’)
ylabel(’w (nA)’)
show()

Example: Kremer_et_al_2011 (frompapers)

Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex Kremer Y, Leger JF, Goodman DF,
Brette R, Bourdieu L (2011). J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex. Whiskers are deflected with random moving bars.
N.B.: network construction can be long.
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In this version, STDP is faster than in the paper so that the script runs in just a few minutes.

from brian import *

# Uncomment if you have a C compiler
# set_global_preferences(useweave=True,usecodegen=True,usecodegenweave=True,usenewpropagate=True,usecstdp=True)

# PARAMETERS
# Neuron numbers
M4,M23exc,M23inh=22,25,12 # side of each barrel (in neurons)
N4,N23exc,N23inh=M4**2,M23exc**2,M23inh**2 # neurons per barrel
barrelarraysize=5 # Choose 3 or 4 if memory error
Nbarrels=barrelarraysize**2
# Stimulation
stim_change_time = 5*ms
Fmax=.5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
# Neuron parameters
taum,taue,taui=10*ms,2*ms,25*ms
El=-70*mV
Vt,vt_inc,tauvt=-55*mV,2*mV,50*ms # adaptive threshold
# STDP
taup,taud=5*ms,25*ms
Ap,Ad=.05,-.04
# EPSPs/IPSPs
EPSP,IPSP = 1*mV,-1*mV
EPSC = EPSP * (taue/taum)**(taum/(taue-taum))
IPSC = IPSP * (taui/taum)**(taum/(taui-taum))
# Model: IF with adaptive threshold
eqs=’’’
dv/dt=(ge+gi+El-v)/taum : volt
dge/dt=-ge/taue : volt
dgi/dt=-gi/taui : volt
dvt/dt=(Vt-vt)/tauvt : volt # adaptation
x : 1
y : 1
’’’
# Tuning curve
tuning=lambda theta:clip(cos(theta),0,Inf)*Fmax

# Layer 4
layer4=PoissonGroup(N4*Nbarrels)
barrels4 = dict(((i, j), layer4.subgroup(N4)) for i in xrange(barrelarraysize) for j in xrange(barrelarraysize))
barrels4active = dict((ij, False) for ij in barrels4)
barrelindices = dict((ij, slice(b._origin, b._origin+len(b))) for ij, b in barrels4.iteritems())
layer4.selectivity = zeros(len(layer4))
for (i, j), inds in barrelindices.iteritems():

layer4.selectivity[inds]=linspace(0,2*pi,N4)

# Layer 2/3
layer23=NeuronGroup(Nbarrels*(N23exc+N23inh),model=eqs,threshold=’v>vt’,reset=’v=El;vt+=vt_inc’,refractory=2*ms)
layer23.v=El
layer23.vt=Vt

# Layer 2/3 excitatory
layer23exc=layer23.subgroup(Nbarrels*N23exc)
x,y=meshgrid(arange(M23exc)*1./M23exc,arange(M23exc)*1./M23exc)
x,y=x.flatten(),y.flatten()
barrels23 = dict(((i, j), layer23exc.subgroup(N23exc)) for i in xrange(barrelarraysize) for j in xrange(barrelarraysize))
for i in range(barrelarraysize):
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for j in range(barrelarraysize):
barrels23[i,j].x=x+i
barrels23[i,j].y=y+j

# Layer 2/3 inhibitory
layer23inh=layer23.subgroup(Nbarrels*N23inh)
x,y=meshgrid(arange(M23inh)*1./M23inh,arange(M23inh)*1./M23inh)
x,y=x.flatten(),y.flatten()
barrels23inh = dict(((i, j), layer23inh.subgroup(N23inh)) for i in xrange(barrelarraysize) for j in xrange(barrelarraysize))
for i in range(barrelarraysize):

for j in range(barrelarraysize):
barrels23inh[i,j].x=x+i
barrels23inh[i,j].y=y+j

print "Building synapses, please wait..."
# Feedforward connections
feedforward=Connection(layer4,layer23exc,’ge’)
for i in range(barrelarraysize):

for j in range(barrelarraysize):
feedforward.connect_random(barrels4[i,j],barrels23[i,j],sparseness=.5,weight=EPSC*.5)

stdp=ExponentialSTDP(feedforward,taup,taud,Ap,Ad,wmax=EPSC)

# Excitatory lateral connections
recurrent_exc=Connection(layer23exc,layer23,’ge’)
recurrent_exc.connect_random(layer23exc,layer23exc,weight=EPSC*.3,

sparseness=lambda i,j:.15*exp(-.5*(((layer23exc.x[i]-layer23exc.x[j])/.4)**2+((layer23exc.y[i]-layer23exc.y[j])/.4)**2)))
recurrent_exc.connect_random(layer23exc,layer23inh,weight=EPSC,

sparseness=lambda i,j:.15*exp(-.5*(((layer23exc.x[i]-layer23inh.x[j])/.4)**2+((layer23exc.y[i]-layer23inh.y[j])/.4)**2)))

# Inhibitory lateral connections
recurrent_inh=Connection(layer23inh,layer23exc,’gi’)
recurrent_inh.connect_random(layer23inh,layer23exc,weight=IPSC,

sparseness=lambda i,j:exp(-.5*(((layer23inh.x[i]-layer23exc.x[j])/.2)**2+((layer23inh.y[i]-layer23exc.y[j])/.2)**2)))

# Stimulation
stimspeed = 1./stim_change_time # speed at which the bar of stimulation moves
direction = 0.0
stimzonecentre = ones(2)*barrelarraysize/2.
stimcentre,stimnorm = zeros(2),zeros(2)
stimradius = (11*stim_change_time*stimspeed+1)*.5
stimradius2 = stimradius**2

def new_direction():
global direction
direction = rand()*2*pi
stimnorm[:] = (cos(direction), sin(direction))
stimcentre[:] = stimzonecentre-stimnorm*stimradius

@network_operation
def stimulation():

global direction, stimcentre
stimcentre += stimspeed*stimnorm*defaultclock.dt
if sum((stimcentre-stimzonecentre)**2)>stimradius2:

new_direction()
for (i, j), b in barrels4.iteritems():

whiskerpos = array([i,j], dtype=float)+0.5
isactive = abs(dot(whiskerpos-stimcentre, stimnorm))<.5
if barrels4active[i, j]!=isactive:
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barrels4active[i, j] = isactive
b.rate = float(isactive)*tuning(layer4.selectivity[barrelindices[i, j]]-direction)

new_direction()

run(5*second,report=’text’)

figure()
# Preferred direction
selectivity=array([mean(array(feedforward[:,i].todense())*exp(layer4.selectivity*1j)) for i in range(len(layer23exc))])
selectivity=(arctan2(selectivity.imag,selectivity.real) % (2*pi))*180./pi

I=zeros((barrelarraysize*M23exc,barrelarraysize*M23exc))
ix=array(around(layer23exc.x*M23exc),dtype=int)
iy=array(around(layer23exc.y*M23exc),dtype=int)
I[iy,ix]=selectivity
imshow(I)
hsv()
colorbar()
for i in range(1,barrelarraysize+1):

plot([i*max(ix)/barrelarraysize,i*max(ix)/barrelarraysize],[0,max(iy)],’k’)
plot([0,max(ix)],[i*max(iy)/barrelarraysize,i*max(iy)/barrelarraysize],’k’)

figure()
hist(selectivity)

show()

3.2.11 frompapers/computing with neural synchrony/coincidence detection and
synchrony

Example: Fig6_shared_variability (frompapers/computing with neural synchrony/coincidence de-
tection and synchrony)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 6. Shared variability.

This example shows that synchrony may be reproducible without individual responses being reproducible, because of
shared variability (here due to a common input).

Caption (Fig 6). Neurons A and B receive the same stimulus-driven input, neuron C receives a different one. The
stimuli are identical in all trials but all neurons receive a shared input that varies between trials. Each neuron also has
a private source of noise. Top, Responses of neurons A (black), B (red) and C (blue) in 25 trials, with a signal-to-noise
ratio (SNR) of 10 dB (shared vs. private). Bottom left, The shuffled autocorrelogram of neuron A indicates that spike
trains are not reproducible at a fine timescale. Botto right, Nevertheless, the average cross-correlogram between A and
B shows synchrony at a millisecond timescale, which does not appear between A and C.

from brian import *

# Inputs
N=100 # number of trials
tau=10*ms
sigma=0.7
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eqs_input=’’’
dx/dt=-x/tau+(2/tau)**.5*xi : 1
’’’

input=NeuronGroup(N+2,eqs_input)
shared=input[:N] # different in all trials, but common to all neurons
stimulus1=input[N:N+1] # identical in all trials
stimulus2=input[N+1:] # identical in all trials

# Neurons
taum=10*ms
#sigma_noise=.05
duration=3000*ms

#sigma=sigma*sqrt(2.)
SNRdB=10.
SNR = 10.**(SNRdB/10.)
Z=sigma*sqrt((taum+tau)/(tau*(SNR**2+1))) # normalizing factor
#print Z,Z*SNR
#Z=sigma*sqrt(1./(SNR**2+1))
eqs_neurons=’’’
dv/dt=(Z*(SNR*I+n)-v)/taum: 1
dn/dt=-n/tau+(2./tau)**.5*xi : 1
I : 1
’’’

neuron=NeuronGroup(3*N,eqs_neurons,threshold=1,reset=0)
neuronA=neuron[:N]
neuronB=neuron[N:2*N]
neuronC=neuron[2*N:]
neuron.n=randn(len(neuron))

@network_operation
def inject():

neuronA.I=shared.x+stimulus1.x
neuronB.I=shared.x+stimulus1.x
neuronC.I=shared.x+stimulus2.x

spikes=SpikeMonitor(neuron)

run(duration,report=’text’)

# Figure
figure()
# Raster plot
subplot(211) # Fig. 6B
i,t=zip(*[(i,t) for i,t in spikes.spikes if (i<25)])
plot(t,array(i)+50,’.k’)
i,t=zip(*[(i,t) for i,t in spikes.spikes if (i>=N) & (i<N+25)])
plot(t,array(i)-N+25,’.r’)
i,t=zip(*[(i,t) for i,t in spikes.spikes if (i>=2*N) & (i<2*N+25)])
plot(t,array(i)-2*N,’.b’)
ylim(0,75)
xlabel(’Time (s)’)
ylabel(’Trials’)

# Cross-correlograms (CC)
width=100*ms
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bin=1*ms
spikes=spikes.spiketimes
C_AB=correlogram(spikes[0],spikes[N],width=width,T=duration)
for i in range(1,N):

C_AB+=correlogram(spikes[i],spikes[N+i],width=width,T=duration)
C_AC=correlogram(spikes[0],spikes[2*N],width=width,T=duration)
for i in range(1,N):

C_AC+=correlogram(spikes[i],spikes[2*N+i],width=width,T=duration)

# Shuffled auto-correlogram (SAC)
C=0*C_AB
for i in range(0,N):

for j in range(0,N):
if i!=j:

C+=correlogram(spikes[i],spikes[j],width=width,T=duration)

lag=(arange(len(C))-len(C)/2)*bin

subplot(223) # Fig. 6C
plot(lag/ms,C/(bin*N*(N-1)),’k’)
ylim(0,1.1*max(C_AB/(bin*N)))
xlabel(’Lag (ms)’)
ylabel(’Coincidences’)

subplot(224) # Fig. 6D
plot(lag/ms,C_AB/(bin*N),’k’) # A vs. B
plot(lag/ms,C_AC/(bin*N),’r’) # A vs. C
ylim(0,1.1*max(C_AB/(bin*N)))
xlabel(’Lag (ms)’)
ylabel(’Coincidences’)

show()

Example: Fig5E_precision_reliability (frompapers/computing with neural synchrony/coincidence
detection and synchrony)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 5E. (very long simulation)

Caption (Fig 5E). Precision and reliability of spike timing as a function of SNR.

Simulations are run in parallel on all cores but one.

from brian import *
import multiprocessing

def autocor(PSTH,N=None,T=20*ms,bin=None):
’’’
Autocorrelogram of PSTH, to calculate a shuffled autocorrelogram

N = number of spike trains
T = temporal window
bin = PSTH bin
The baseline is not subtracted.
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Returns times,SAC
’’’
if bin is None:

bin=defaultclock.dt
n=len(PSTH)
p=int(T/bin)
SAC=zeros(p)
if N is None:

SAC[0]=mean(PSTH*PSTH)
else: # correction to exclude self-coincidences

PSTHnoself=clip(PSTH-1./(bin*N),0,Inf)
SAC[0]=mean(PSTH*PSTHnoself)*N/(N-1.)

SAC[1:]=[mean(PSTH[:-i]*PSTH[i:]) for i in range(1,p)]
SAC=hstack((SAC[::-1],SAC[1:]))
return (arange(len(SAC))-len(SAC)/2)*bin,SAC

def halfwidth(x):
’’’
Returns half-width of function given by x in bin numbers.
This is used to calculate the precision (left panel).
’’’
M,n=max(x),argmax(x)
return find(x[n:]<M/2)[0]+n-find(x[:n]<M/2)[-1]

def reproducibility(SNR):
’’’
Calculates the precision (timescale) and reliability (strength) for a given
signal-to-noise ratio.
’’’
sys.stdout.write("SNR:"+str(SNR)+’\n’)
sys.stdout.flush() # we use this instead of print because of multiprocessing
reinit_default_clock() # important because we do multiple simulations
# The common noisy input
N=5000 # number of neurons simultaneously simulated
duration=30*second # duration of one simulation, 200 seconds in the paper
tau_noise=5*ms
input=NeuronGroup(1,model=’dx/dt=-x/tau_noise+(2./tau_noise)**.5*xi:1’)

# The noisy neurons receiving the same input
tau=10*ms
sigma=.5 # input amplitude
Z=sigma*sqrt((tau_noise+tau)/(tau_noise*(SNR**2+1))) # normalizing factor
eqs_neurons=’’’
dx/dt=(Z*(SNR*I+u)-x)/tau:1
du/dt=-u/tau_noise+(2./tau_noise)**.5*xi:1
I : 1
’’’
neurons=NeuronGroup(N,model=eqs_neurons,threshold=1,reset=0,refractory=5*ms)
neurons.x=rand(N) # random initial conditions
neurons.I=linked_var(input,’x’)
rate=PopulationRateMonitor(neurons) # PSTH

run(duration)

t,SAC=autocor(rate.rate,N,T=30*ms)
timescale=float(halfwidth(SAC-mean(rate.rate)**2))*defaultclock.dt # precision
strength=sum(SAC-mean(rate.rate)**2)*float(defaultclock.dt)/mean(rate.rate) # reliability
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return timescale,strength

if __name__==’__main__’:
pool = multiprocessing.Pool(multiprocessing.cpu_count()-1) # all cores but one
SNRdB= linspace(-10,15,20) # 100 points in the paper
SNR = 10.**(SNRdB/10.)
results = pool.map(reproducibility, SNR) # launches multiple processes
timescale,strength=zip(*results)

# Figure
subplot(211)
plot(SNRdB,timescale*1000)
xlabel(’SNR (dB)’)
ylabel(’Precision (ms)’)
subplot(212)
plot(SNRdB,strength*100)
xlabel(’SNR (dB)’)
ylabel(’Reliability (%)’)
show()

Example: Fig5D_reproducibility (frompapers/computing with neural synchrony/coincidence detec-
tion and synchrony)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 5D, left.

Caption (Fig 5D). Responses of a noisy integrate-and-fire model in repeated trials.

Protocol: neuron receives input = signal + noise, both O-U processes, signal is identical in all trials (frozen noise).
The total variance is held fixed. Signal-to-noise ratio is 3 in this simulation.

from brian import *

# The common noisy input
tau_noise=5*ms
input=NeuronGroup(1,model=’dx/dt=-x/tau_noise+(2./tau_noise)**.5*xi:1’)

# The noisy neurons receiving the same input + independent noise
tau=10*ms
SNR=3. # signal to noise ratio
sigma=.5 # total input amplitude
Z=sigma*sqrt((tau_noise+tau)/(tau_noise*(SNR**2+1))) # normalizing factor
eqs_neurons=’’’
dx/dt=(Z*(SNR*I+u)-x)/tau:1
du/dt=-u/tau_noise+(2./tau_noise)**.5*xi:1
I : 1
’’’
neurons=NeuronGroup(25,model=eqs_neurons,threshold=1,reset=0,refractory=5*ms)
neurons.x=rand(25) # random initial conditions
neurons.I=linked_var(input,’x’)
spikes=SpikeMonitor(neurons)

run(2*second)

# Figure
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raster_plot(spikes)
show()

Example: Fig1C (frompapers/computing with neural synchrony/coincidence detection and syn-
chrony)

Timescale and strength

from brian import *

rc(’lines’,linewidth=2)
rc(’font’,size=16)
rc(’xtick’,labelsize=16)
rc(’ytick’,labelsize=16)
rc(’legend’,fontsize=16)
rc(’axes’,labelsize=16,titlesize=16)
w,h=rcParamsDefault[’figure.figsize’]
fontsize=16

SNR,timescale,strength=loadtxt(’reproducibility.txt’)
SNR=10*log(SNR)/log(10)
#SNR=SNR[1:]
#timescale=timescale[1:]
#strength=strength[1:]

figure(figsize=(w*1.5,h*.5))
subplot(121)
plot(SNR,timescale/ms,’k’)
#plot(SNR,timescale/ms,’r.’)
plot(SNR,0*SNR+7,’k--’)
xlabel(’SNR (dB)’)
ylabel(’Precision (ms)’)
subplot(122)
plot(SNR,strength*100,’k’)
ylim(0,100)
#plot(SNR,strength*100,’r.’)
xlabel(’SNR (dB)’)
ylabel(’Reliability (%)’)
savefig(’FigC.eps’)
show()

Example: Fig1F_ROC (frompapers/computing with neural synchrony/coincidence detection and
synchrony)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 1F. (simulation takes about 10 mins)

Coincidence detection is seen as a signal detection problem, that of detecting a given depolarization in a background
of noise, within one characteristic time constant. The choice of the spike threshold implements a particular trade-off
between false alarms (depolarization was due to noise) and misses (depolarization was not detected).

Caption (Fig 1F). Receiver-operation characteristic (ROC) for one level of noise, obtained by varying the threshold
(black curve). The hit rate is the probability that the neuron fires within one integration time constant t when depo-
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larized by Dv, and the false alarm rate is the firing probability without depolarization. The corresponding theoretical
curve, with sensitivity index d’ =Dv/sigma, is shown in red.

from brian import *
from scipy.special import erf

def spike_probability(x): # firing probability for unit variance and zero mean, and threshold = x
return .5*(1-erf(x/sqrt(2.)))

tau_cd=5*ms # membrane time constant (cd for coincidence detector)
tau_n=tau_cd # input is an Ornstein-Uhlenbeck process with the same time constant as the membrane time constant
T=3*tau_n # neurons are depolarized by w at regular intervales, T is the spacing
Nspikes=10000 # number of input spikes
T0=T*Nspikes # initial period without inputs, to calculate the false alarm rate
N=500 # number of neurons, each neuron has a different threshold between 0. and 3.
w=1 # synaptic weight (depolarization)
sigma=1. # input noise s.d.
sigmav=sigma*sqrt(tau_n/(tau_n+tau_cd)) # noise s.d. on the membrane potential
print "d’=",1./sigmav # discriminability index

# Integrate-and-fire neurons
eqs=’’’
dv/dt=(sigma*n-v)/tau_cd : 1
dn/dt=-n/tau_n+(2/tau_n)**.5*xi : 1
vt : 1 # spike threshold
’’’
neurons=NeuronGroup(N,model=eqs,threshold=’v>vt’,reset=’v=0’,refractory=tau_cd)
neurons.vt=linspace(0.,3,N) # spike threshold varies across neurons
counter=SpikeCounter(neurons)

# Inputs are regular spikes, starting at T0
input=SpikeGeneratorGroup(1,[(0,n*T+T0) for n in range(Nspikes)])
C=Connection(input,neurons,’v’,weight=w)

# Calculate the false alarm rate
run(T0,report=’text’)
FR=tau_cd*counter.count*1./T0
# Calculate the hit rate
counter.reinit()
run(Nspikes*T,report=’text’)
HR=counter.count*1./Nspikes-FR*(T-tau_cd)/tau_cd

# Prediction based on Gaussian statistics
FRpred=spike_probability(neurons.vt/sigmav)
HRpred=spike_probability((neurons.vt-w)/sigmav)

# Figure
plot(FR*100,HR*100,’k’) # simulations
plot(FRpred*100,HRpred*100,’r’) # theoretical predictions
plot([0,100],[0,100],’k--’)
plot([0,100],[50,50],’k--’)
xlim(0,100)
ylim(0,100)
xlabel(’False alarm rate (%)’)
ylabel(’Hit rate (%)’)

show()
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3.2.12 frompapers/computing with neural synchrony/hearing

Example: Fig12A_Goodman_Brette_2010 (frompapers/computing with neural synchrony/hearing)

Sound localization with HRTFs

Goodman DF and R Brette (2010). Spike-timing-based computation in sound localization. PLoS Comp Biol 6(11):
e1000993. doi:10.1371/journal.pcbi.1000993.

Corresponds to Fig. 12A in: Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Simplified version of the “ideal” sound localisation model.

The sound is played at a particular spatial location (indicated on the final plot by a red +). Each location has a
corresponding assembly of neurons, whose summed firing rates give the sizes of the blue circles in the plot. The most
strongly responding assembly is indicated by the green x, which is the estimate of the location by the model.

from brian import *
from brian.hears import *

# Download the IRCAM database
# http://recherche.ircam.fr/equipes/salles/listen/download.html
# and replace this filename with the location you downloaded it to
hrtfdb = IRCAM_LISTEN(r’Z:\HRTF\IRCAM’)
subject = 1002
hrtfset = hrtfdb.load_subject(subject)
# This gives the number of spatial locations in the set of HRTFs
num_indices = hrtfset.num_indices
# Choose a random location for the sound to come from
index = randint(num_indices)
# A sound to test the model with
sound = Sound.whitenoise(500*ms)
# This is the specific HRTF for the chosen location
hrtf = hrtfset.hrtf[index]
# We apply the chosen HRTF to the sound, the output has 2 channels
hrtf_fb = hrtf.filterbank(sound)
# We swap these channels (equivalent to swapping the channels in the
# subsequent filters, but simpler to do it with the inputs)
swapped_channels = RestructureFilterbank(hrtf_fb, indexmapping=[1, 0])
# Now we apply all of the possible pairs of HRTFs in the set to these
# swapped channels, which means repeating them num_indices times first
hrtfset_fb = hrtfset.filterbank(Repeat(swapped_channels, num_indices))
# Now we apply cochlear filtering (logically, this comes before the HRTF
# filtering, but since convolution is commutative it is more efficient to
# do the cochlear filtering afterwards
cfmin, cfmax, cfN = 150*Hz, 5*kHz, 40
cf = erbspace(cfmin, cfmax, cfN)
# We repeat each of the HRTFSet filterbank channels cfN times, so that
# for each location we will apply each possible cochlear frequency
gfb = Gammatone(Repeat(hrtfset_fb, cfN),

tile(cf, hrtfset_fb.nchannels))
# Half wave rectification and compression
cochlea = FunctionFilterbank(gfb, lambda x:15*clip(x, 0, Inf)**(1.0/3.0))
# Leaky integrate and fire neuron model
eqs = ’’’
dV/dt = (I-V)/(1*ms)+0.1*xi/(0.5*ms)**.5 : 1
I : 1
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’’’
G = FilterbankGroup(cochlea, ’I’, eqs, reset=0, threshold=1, refractory=5*ms)
# The coincidence detector (cd) neurons
cd = NeuronGroup(num_indices*cfN, eqs, reset=0, threshold=1, clock=G.clock)
# Each CD neuron receives precisely two inputs, one from the left ear and
# one from the right, for each location and each cochlear frequency
C = Connection(G, cd, ’V’)
for i in xrange(num_indices*cfN):

C[i, i] = 0.5 # from right ear
C[i+num_indices*cfN, i] = 0.5 # from left ear

# We want to just count the number of CD spikes
counter = SpikeCounter(cd)
# Run the simulation, giving a report on how long it will take as we run
run(sound.duration, report=’stderr’)
# We take the array of counts, and reshape them into a 2D array which we sum
# across frequencies to get the spike count of each location-specific assembly
count = counter.count
count.shape = (num_indices, cfN)
count = sum(count, axis=1)
count = array(count, dtype=float)/amax(count)
# Our guess of the location is the index of the strongest firing assembly
index_guess = argmax(count)
# Now we plot the output, using the coordinates of the HRTFSet
coords = hrtfset.coordinates
azim, elev = coords[’azim’], coords[’elev’]
scatter(azim, elev, 100*count)
plot([azim[index]], [elev[index]], ’+r’, ms=15, mew=2)
plot([azim[index_guess]], [elev[index_guess]], ’xg’, ms=15, mew=2)
xlabel(’Azimuth (deg)’)
ylabel(’Elevation (deg)’)
xlim(-5, 350)
ylim(-50, 95)
show()

Example: Fig7A_Jeffress (frompapers/computing with neural synchrony/hearing)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 7A. Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the
head. Delay differences between the two ears are used to determine the azimuth of the source. Delays are mapped to
a neural place code using delay lines (each neuron receives input from both ears, with different delays).

from brian import *

defaultclock.dt = .02 * ms
dt = defaultclock.dt

# Sound
sound = TimedArray(10 * randn(50000)) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300 * metre / second
interaural_distance = 20 * cm # big head!
max_delay = interaural_distance / sound_speed
print "Maximum interaural delay:", max_delay
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angular_speed = 2 * pi * radian / second # 1 turn/second
tau_ear = 1 * ms
sigma_ear = .05
eqs_ears = ’’’
dx/dt=(sound(t-delay)-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1
delay=distance*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt=angular_speed : radian
’’’
ears = NeuronGroup(2, model=eqs_ears, threshold=1, reset=0, refractory=2.5 * ms)
ears.distance = [-.5 * max_delay, .5 * max_delay]
traces = StateMonitor(ears, ’x’, record=True)

# Coincidence detectors
N = 300
tau = 1 * ms
sigma = .05
eqs_neurons = ’’’
dv/dt=-v/tau+sigma*(2./tau)**.5*xi : 1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0)
synapses = Connection(ears, neurons, ’v’, structure=’dense’, delay=True, max_delay=1.1 * max_delay)
synapses.connect_full(ears, neurons, weight=.5)
synapses.delay[0, :] = linspace(0 * ms, 1.1 * max_delay, N)
synapses.delay[1, :] = linspace(0 * ms, 1.1 * max_delay, N)[::-1]
spikes = SpikeMonitor(neurons)

run(1000 * ms)
raster_plot(spikes)
show()

Example: Fig7B_Licklider (frompapers/computing with neural synchrony/hearing)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 12B. Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines).

from brian import *

defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20 * ms # 50 Hz
tau_ear = 1 * ms
sigma_ear = .1
eqs_ear = ’’’
dx/dt=(sound-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1
sound=5*sin(2*pi*frequency*t)**3 : 1 # nonlinear distorsion
#sound=5*(sin(4*pi*frequency*t)+.5*sin(6*pi*frequency*t)) : 1 # missing fundamental
frequency=(200+200*t*Hz)*Hz : Hz # increasing pitch
’’’
receptors = NeuronGroup(2, model=eqs_ear, threshold=1, reset=0, refractory=2 * ms)
traces = StateMonitor(receptors, ’x’, record=True)
sound = StateMonitor(receptors, ’sound’, record=0)
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# Coincidence detectors
min_freq = 50 * Hz
max_freq = 1000 * Hz
N = 300
tau = 1 * ms
sigma = .1
eqs_neurons = ’’’
dv/dt=-v/tau+sigma*(2./tau)**.5*xi : 1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0)
synapses = Connection(receptors, neurons, ’v’, structure=’dense’, max_delay=1.1 * max_delay, delay=True)
synapses.connect_full(receptors, neurons, weight=.5)
synapses.delay[1, :] = 1. / exp(linspace(log(min_freq / Hz), log(max_freq / Hz), N))
spikes = SpikeMonitor(neurons)

run(500 * ms)
raster_plot(spikes)
ylabel(’Frequency’)
yticks([0, 99, 199, 299], array(1. / synapses.delay.todense()[1, [0, 99, 199, 299]], dtype=int))
show()

3.2.13 frompapers/computing with neural synchrony/duration selectivity

Example: Fig2A_synchrony_partition (frompapers/computing with neural synchrony/duration se-
lectivity)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 2A. Synchrony partition for duration selective neurons.

Caption (Fig. 2A) Decoding synchrony patterns in a heterogeneous population. Color represents the latency of the
spike produced by each neuron responding to the stimulus (white if the neuron did not spike). Thus, neurons with
the same color are synchronous for that specific stimulus (duration). The population can be divided in groups of
synchronous neurons (i.e., with the same color), forming the “synchrony partition”. Circled neurons belong to the
same synchronous group.

This script calculates and displays the synchrony partition for one particular duration. It also saves the results in
file, that is required by the script Fig2C_decoding_synchrony. The synchrony partition is calculated empirically,
by simulating the responses of the neurons at the specific inhibitory duration and grouping neurons that respond in
synchrony (+- 2 ms).

from brian import *
from numpy.random import seed
from params import *
from pylab import cm

# Graphics
radius=.15
selected_neuron=7
# Parameters
ginh_max=5.
Nx=5 # number of neurons per row
N=Nx*Nx # number of neurons
rest_time=1*second # initial time
duration=500*ms
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delta_t=2*ms # Size of synchronous groups (maximum time difference)

# Duration-selective neurons
eqs=’’’
dv/dt=(El-v+(gmax*gK+gmax2*gK2+ginh)*(EK-v))/tau : volt
dgK/dt=(gKinf-gK)/tauK : 1 # IKLT
dgK2/dt=-gK2/tauK2 : 1 # Delayed rectifier
gKinf=1./(1+exp((Va-v)/ka)) : 1
ginh = ginh_max*((t>rest_time) & (t<(rest_time+duration))) : 1
tauK : ms
tau : ms
gmax : 1
’’’

uniform=lambda N:(rand(N)-.5)*2 # uniform between -1 and 1
seed(31418) # Get the same neurons every time

neurons=NeuronGroup(N,model=eqs,threshold=’v>Vt’,reset=’v=Vr;gK2=1’)
neurons.v=Vr
neurons.gK=1./(1+exp((Va-El)/ka))
neurons.tauK=400*ms+uniform(N)*tauK_spread
alpha=(El-Vt)/(Vt-EK)
neurons.gmax=alpha*(minx+(maxx-minx)*rand(N))
neurons.tau=30*ms+uniform(N)*tau_spread

spikes=SpikeMonitor(neurons)

run(rest_time+1.1*second)

# Calculate first spike time of each neuron
times=zeros(N) # First spike time of each neuron
times[:]=Inf # Inf means: no response, or response before the start of the stimulus
blacklist=[] # neurons that fire spontaneously
for i,t in spikes.spikes:

if times[i]==Inf:
times[i]=t-duration-rest_time
if times[i]<0:

blacklist.append(i)
times[blacklist]=Inf
tmin,tmax=min(times[times!=Inf]),max(times[times!=Inf])
# Color of each neuron between 0 and 1
color=(times-tmin)/(tmax+1e-10-tmin) # (to avoid zero division)

# Assign groups; each responding neuron gets a group number
group_size=delta_t/(tmax-tmin) # size of a group, as a proportion of the timing range
group_number=array(color/group_size,dtype=int)
group_number[color==Inf]=-1

# Get the size of each group
count=zeros(max(group_number)+1) # number of neurons in each group
for i in range(len(group_number)):

if group_number[i]!=-1:
count[group_number[i]]+=1

selected_group=group_number[selected_neuron]

# Display the synchrony partition (Fig. 2A)
axes(frameon=False)
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axis(’scaled’)
xticks([])
yticks([])
i=0
for y in linspace(0,1,Nx):

for x in linspace(0,1,Nx):
if color[i]!=Inf:

if group_number[i]==selected_group:
w=4
ec="k" # edge color

else:
w=1
ec=’k’

cir=Circle((x,y),radius,fc=cm.jet(color[i]),linewidth=w,ec=ec)
else:

cir=Circle((x,y),radius,fc=’w’)
i+=1
gca().add_patch(cir)

xlim(0-2*radius,1+2*radius)
ylim(0-2*radius,1+2*radius)

# Remove groups with fewer than two neurons and recalculate group numbers
for i in range(len(group_number)):

if group_number[i]>=0:
if count[group_number[i]]>=2:

group_number[i]=sum(count[:group_number[i]]>=2)
else:

group_number[i]=-1

# Save assignment to groups
f=open(’groups’+str(int(duration/ms))+’.txt’,’w’)
f.write(’ ’.join([str(x) for x in group_number]))
f.close()

show()

Example: Fig1A_rebound_neurons (frompapers/computing with neural synchrony/duration selec-
tivity)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 1A, B.

Caption (Fig. 1A,B) A, When neuron A is hyperpolarized by an inhibitory input (top), its low-voltage-activated K
channels slowly close (bottom), which makes the neuron fire when inhibition is released (neuron models are used in
this and other figures). B, Spike latency is negatively correlated with the duration of inhibition (black line).

from brian import *

# Parameters and equations of the rebound neurons
Vt=-55*mV
Vr=-70*mV
El=-35*mV
EK=-90*mV
Va=Vr
ka=5*mV
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gmax=1
gmax2=2
tau=20*ms
ginh_max=5.
tauK=400*ms
tauK2=100*ms
N=100 # number of neurons (= different durations, for plot 1B)
plotted_neuron=N/4
rest_time=1*second # initial time (to start at equilibrium)
tmin=rest_time-20*ms # for plots
tmax=rest_time+600*ms

eqs=’’’
dv/dt=(El-v+(gmax*gK+gmax2*gK2+ginh)*(EK-v))/tau : volt
dgK/dt=(gKinf-gK)/tauK : 1 # IKLT
dgK2/dt=-gK2/tauK2 : 1 # Delayed rectifier
gKinf=1./(1+exp((Va-v)/ka)) : 1
duration : second # duration of inhibition, varies across neurons
ginh = ginh_max*((t>rest_time) & (t<(rest_time+duration))) : 1
’’’

neurons=NeuronGroup(N,model=eqs,threshold=’v>Vt’,reset=’v=Vr;gK2=1’)
neurons.v=Vr
neurons.gK=1./(1+exp((Va-El)/ka))
neurons.duration=linspace(100*ms,1*second,N)
M=StateMonitor(neurons,’v’,record=plotted_neuron)
Mg=StateMonitor(neurons,’gK’,record=plotted_neuron)
spikes=SpikeMonitor(neurons)

run(rest_time+1.1*second)

M.insert_spikes(spikes) # draw spikes for a nicer display

# Figure
subplot(221) # Fig. 1A, top
plot((M.times-tmin)/ms,M[plotted_neuron]/mV,’k’)
xlim(0,(tmax-tmin)/ms)
ylabel(’V (mV)’)
subplot(223) # Fig. 1A, bottom
plot((Mg.times-tmin)/ms,Mg[plotted_neuron],’k’)
xlim(0,(tmax-tmin)/ms)
xlabel(’Time (ms)’)
ylabel(’g/gmax’)

subplot(122) # Fig. 1B
times=array([t-neurons.duration[i]*second-rest_time for i,t in spikes.spikes])
duration=array([neurons.duration[i]*second for i,_ in spikes.spikes])
plot(duration/ms,times/ms,’k’)
xlabel(’Duration (ms)’)
ylabel(’Latency (ms)’)
show()
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Example: Fig2C_decoding_synchrony (frompapers/computing with neural synchrony/duration se-
lectivity)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 2C. Decoding synchrony patterns.

Caption (Fig. 2C). Activation of the postsynaptic assembly as a function of duration (grey: individual neurons; black:
average).

The script Fig2A_synchrony_partition must be run first (it produces a file).

from brian import *
from numpy.random import seed
from params import *
from pylab import cm

Ndur=2000*5 # number of stimulus durations (durations are multiplexed)
sigma=0.1 # More/less noise

best_duration=500*ms

# Read group index for each neuron
f=open(’groups’+str(int(best_duration/ms))+’.txt’)
group_number=array([int(x) for x in f.read().split(’ ’)])
nneurons=max(group_number)+1 # one postsynaptic neuron per group
f.close()

# Calculate group size
count=zeros(nneurons) # number of presynaptic neurons for each postsynaptic neuron
for i in range(len(group_number)):

if group_number[i]!=-1:
count[group_number[i]]+=1

# Presynaptic neurons
ginh_max=5.
Nx=5 # number of neurons per row
N=Nx*Nx # number of neurons
rest_time=1*second # initial time
eqs=’’’
dv/dt=(El-v+(gmax*gK+gmax2*gK2+ginh)*(EK-v))/tau : volt
dgK/dt=(gKinf-gK)/tauK : 1 # IKLT
dgK2/dt=-gK2/tauK2 : 1 # Delayed rectifier
gKinf=1./(1+exp((Va-v)/ka)) : 1
ginh = ginh_max*((t>rest_time) & (t<(rest_time+duration))) : 1
tauK : ms
tau : ms
gmax : 1
duration : second
’’’

uniform=lambda N:(rand(N)-.5)*2 #uniform between -1 and 1
seed(31418) # Get the same neurons every time
_tauK=400*ms+uniform(N)*tauK_spread
alpha=(El-Vt)/(Vt-EK)
_gmax=alpha*(minx+(maxx-minx)*rand(N))
_tau=30*ms+uniform(N)*tau_spread
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neurons=NeuronGroup(N*Ndur,model=eqs,threshold=’v>Vt’,reset=’v=Vr;gK2=1’)
neurons.v=Vr
neurons.gK=1./(1+exp((Va-El)/ka))

# Postsynaptic neurons (noisy coincidence detectors)
eqs_post=’’’
dv/dt=(n-v)/tau_cd : 1
dn/dt=-n/tau_n+sigma*(2/tau_n)**.5*xi : 1
’’’
postneurons=NeuronGroup(Ndur*nneurons,model=eqs_post,threshold=1,reset=0)
C=Connection(neurons,postneurons)

# Divide into subgroups, each group corresponds to one postsynaptic neuron with all stimulus durations
postgroup=[]
for i in range(nneurons):

postgroup.append(postneurons.subgroup(Ndur))

# Connections according to the synchrony partition
group=[]
for i in range(N):

group.append(neurons.subgroup(Ndur))
group[i].tauK=_tauK[i]
group[i].gmax=_gmax[i]
group[i].tau=_tau[i]
group[i].duration=linspace(100*ms,1*second,Ndur)
if group_number[i]>=0:

C.connect_one_to_one(group[i],postgroup[group_number[i]],weight=1./count[group_number[i]])

spikes=SpikeCounter(postneurons)

run(rest_time+1.1*second,report=’text’)

# Figure (2C)
window=100*5 # smoothing window
rate=zeros(Ndur-window)
totrate=zeros(Ndur-window)
for i in range(nneurons): # display tuning curve for each neuron, in grey

count=spikes.count[i*Ndur:(i+1)*Ndur]
# Smooth
for j in range(0,len(count)-window):

rate[j]=mean(count[j:j+window])
totrate+=rate
if i<5: # plot only 5 individual curves

plot((group[0].duration[window/2:-window/2]/ms),rate,’grey’,linewidth=1)
# Mean tuning curve
plot((group[0].duration[window/2:-window/2]/ms),totrate/nneurons,’k’,linewidth=2)
xlim(100,600)
ylim(0,0.5)
xlabel(’Duration (ms)’)
ylabel(’Spiking probability’)
show()
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Example: Fig4_duration_stdp (frompapers/computing with neural synchrony/duration selectivity)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 4D. STDP in the duration model. (very long simulation, default: 5000 stimuli)

Caption (Fig. 4D). Temporal evolution of the synaptic weights of the neuron corresponding to the blue curves in Fig.
4C.

The script runs the simulation with STDP for a long time, then displays the evolution of synaptic weights for one
neuron.

from brian import *
from pylab import cm
from numpy.random import seed
from brian.experimental.connectionmonitor import *
import numpy
from params import *

# Rebound neurons
eqs=’’’
dv/dt=(El-v+(gmax*gK+gmax2*gK2+ginh)*(EK-v))/tau : volt
dgK/dt=(gKinf-gK)/tauK : 1 # IKLT
dgK2/dt=-gK2/tauK2 : 1 # Delayed rectifier
gKinf=1./(1+exp((Va-v)/ka)) : 1
tauK : ms
tau : ms
gmax : 1
ginh : 1
’’’

uniform=lambda N:(rand(N)-.5)*2 #uniform between -1 and 1
seed(31415) # Get the same neurons every time

neurons=NeuronGroup(N,model=eqs,threshold=’v>Vt’,reset=’v=Vr;gK2=1’)
neurons.v=Vr
neurons.gK=1./(1+exp((Va-El)/ka))
neurons.tauK=400*ms+uniform(N)*tauK_spread
alpha=(El-Vt)/(Vt-EK)
neurons.gmax=alpha*(minx+(maxx-minx)*rand(N))
neurons.tau=30*ms+uniform(N)*tau_spread

# Store the value of state variables at rest
print "Calculate resting state"
run(2*second)
rest=zeros(neurons._S.shape)
rest[:]=neurons._S

# Postsynaptic neurons (noisy coincidence detectors)
eqs_post=’’’
dv/dt=(n-v)/tau_cd : 1
dn/dt=-n/tau_n+sigma*(2/tau_n)**.5*xi : 1
’’’
postneurons=NeuronGroup(Nout,model=eqs_post,threshold=1,reset=0,refractory=refractory)

# Random connections between pre and post-synaptic neurons
C=Connection(neurons,postneurons,’v’,sparseness=Nsynapses*1./N,weight=w0)
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# STDP
eqs_stdp=’’’
dApre/dt=-Apre/tau_pre : 1
Apost : 1
’’’
pre=’’’
Apre+=a_pre
w+=0 #b_pre*w
’’’
post=’’’
Apost+=0
w+=Apre+b_post*w
’’’
stdp=STDP(C,eqs_stdp,pre=pre,post=post,wmax=Inf)

# Record the evolution of synaptic weights
MC=ConnectionMonitor(C,store=True,clock=EventClock(dt=record_period))

print "Learning..."
# Series of inhibitory pulses
for i in range(Npulses):

print "pulse",i+1
duration=200*ms+rand()*300*ms # random stimulus duration
neurons.ginh=ginh_max
run(duration)
C.W.alldata[:]=C.W.alldata+C.W.alldata*b_pre # homeostasis (synaptic scaling)
neurons.ginh=0
run(rest_time) # let neurons spike
neurons._S[:]=rest # reset (to save time)

# Figure (4D)
neuron=0
wsave=[(t,M.todense()) for (t,M) in MC.values]
W=array(zip(*wsave)[1])
weights=W[:,:,neuron]

# Evolution of all synaptic weights for this neuron
for i in range(weights.shape[1]):

plot(arange(len(weights[:,i,]))*record_period,weights[:,i,],’k’)
xlim(0,weights.shape[0]*float(record_period))
ylim(0,1)

show()

Example: params (frompapers/computing with neural synchrony/duration selectivity)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Duration selectivity, parameters

from brian import *

# Simulation control
Npulses=5000
Ntest=20
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record_period=15*second
rest_time=200*ms
# Encoding neurons
Vt=-55*mV
Vr=-70*mV
El=-35*mV
EK=-90*mV
Va=Vr
ka=5*mV
gmax2=2
tauK2=300*ms
N=100 # number of encoding neurons
Nout=30 # number of decoding neurons
ginh_max=5.
tauK_spread=200*ms
tau_spread=20*ms
minx=1.7 # range of gmax for K+
maxx=2.5
# Coincidence detectors
sigma=0.1 # noise s.d.
tau_cd=5*ms
tau_n=tau_cd # slow noise
refractory=0*ms
# Connections
Nsynapses=5 # synapses per neuron
w0=lambda i,j:rand()
# STDP
factor=0.05
a_pre=.06*factor
b_post=-1.*factor
b_pre=0.1*factor
tau_pre=tau_cd

Example: Fig1D_duration_selectivity (frompapers/computing with neural synchrony/duration selec-
tivity)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 1C,D. Duration selectivity. (takes about 1 min)

Caption (Fig. 1C,D). A postsynaptic neuron receives inputs from A and B. It is more likely to fire when the stimulus
in the synchrony receptive field of A and B.

from brian import *

# Parameters and equations of the rebound neurons
Vt=-55*mV
Vr=-70*mV
El=-35*mV
EK=-90*mV
Va=Vr
ka=5*mV
gmax2=2
tau=20*ms
ginh_max=5.
tauK2=100*ms
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N=10000 # number of neurons (= different durations)
rest_time=1*second # initial time
tmin=rest_time-20*ms #for plots
tmax=rest_time+600*ms

eqs=’’’
dv/dt=(El-v+(gmax*gK+gmax2*gK2+ginh)*(EK-v))/tau : volt
dgK/dt=(gKinf-gK)/tauK : 1 # IKLT
dgK2/dt=-gK2/tauK2 : 1 # Delayed rectifier
gKinf=1./(1+exp((Va-v)/ka)) : 1
duration : second
ginh = ginh_max*((t>rest_time) & (t<(rest_time+duration))) : 1
tauK : ms
gmax : 1
theta : volt # threshold
’’’

neurons=NeuronGroup(2*N,model=eqs,threshold=’v>theta’,reset=’v=Vr;gK2=1’)
neurons.v=Vr
neurons.theta=Vt
neurons.gK=1./(1+exp((Va-El)/ka))
# Neuron A, duplicated to simulate multiple input durations simultaneously
neuronsA=neurons[:N]
neuronsA.tauK=400*ms
neuronsA.gmax=1
neuronsA.theta=-55*mV
neuronsA.duration=linspace(100*ms,1*second,N)
# Neuron B, duplicated to simulate multiple input durations simultaneously
neuronsB=neurons[N:]
neuronsB.tauK=100*ms
neuronsB.gmax=1.5
neuronsB.theta=-54*mV
neuronsB.duration=linspace(100*ms,1*second,N)

# Noisy coincidence detectors
tau_cd=5*ms
tau_n=tau_cd
sigma=0.2 # noise s.d. in units of the threshold
eqs_post=’’’
dv/dt=(n-v)/tau_cd : 1
dn/dt=-n/tau_n+sigma*(2/tau_n)**.5*xi : 1
’’’
postneurons=NeuronGroup(N,model=eqs_post,threshold=1,reset=0)
CA=IdentityConnection(neuronsA,postneurons,’v’,weight=0.5)
CB=IdentityConnection(neuronsB,postneurons,’v’,weight=0.5)

spikes=SpikeCounter(postneurons)
M=StateMonitor(postneurons,’v’,record=N/3)

run(rest_time+1.1*second,report=’text’)

# Figure
subplot(121) # Fig. 1C, example trace
plot(M.times/ms,M[N/3],’k’)
xlim(1350,1500)
ylim(-.3,1)
xlabel(’Time (ms)’)
ylabel(’V’)
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subplot(122) # Fig. 1D, duration tuning curve
count=spikes.count
# Smooth the tuning curve
window=200
rate=zeros(len(count)-window)
for i in range(0,len(count)-window):

rate[i]=mean(count[i:i+window])
plot((neuronsA.duration[window/2:-window/2]/ms)[::10],rate[::10],’k’)
xlim(0,1000)
ylim(0,0.5)
xlabel(’Duration (ms)’)
ylabel(’Spiking probability’)
show()

3.2.14 frompapers/computing with neural synchrony/olfaction

Example: Fig11B_olfaction_stdp_testing (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 11B. Learning to recognize odors.

Caption (Fig. 11B). After learning, responses of postsynaptic neurons, ordered by tuning ratio, to odor A (blue) and
odor B (red), with an increasing concentration (0.1 to 10, where 1 is odor concentration in the learning phase).

Run the other file first: Fig11B_olfaction_stdp_learning.py

from brian import *
from params import *
import numpy
from scipy.sparse import lil_matrix

bmin,bmax=-7,-1

# Loads information from the STDP simulation
t,odor=numpy.load("stimuli.npy").T
W=numpy.load("weights.npy")
spikes_out=numpy.load("spikesout.npy")
weights=W[-1,:,:] # final weights

# Analyze selectivity at the end of the STDP simulation
ispikes=spikes_out[:,0] # indexes of neurons that spiked
tspikes=spikes_out[:,1] # spike timings
# Select only the end of the STDP simulation
end=tspikes>.8*max(tspikes)
ispikes=ispikes[end]
tspikes=tspikes[end]

odors=odor[digitize(tspikes,t)-1] # odor (0/1) presented at the time of spikes

tuning=zeros(30) # Tuning ratio of the postsynaptic neurons
n0,n1=zeros(30),zeros(30) # number of spikes for odor 0 and for odor 1
for k in range(len(tuning)):

o=odors[ispikes==k]
n0[k]=sum(o==0)
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n1[k]=sum(o==1)
tuning[k]=n0[k]*1./(n0[k]+n1[k])

# Sort the postsynaptic neurons by odor tuning
weights=weights[:,argsort(tuning)]

’’’
Run the simulation
’’’
def odor(N):

# Returns a random vector of binding constants
return 10**(rand(N)*(bmax-bmin)+bmin)

def hill_function(c,K=1.,n=3.):
’’’
Hill function:

* c = concentration

* K = half activation constant (choose K=1 for relative concentrations)

* n = Hill coefficient
’’’
return (c**n)/(c**n+K**n)

N=5000 # number of receptors
seed(31415) # Get the same neurons every time
intensity=3000.

# Odor plumes
tau_plume=75*ms
eq_plumes=’’’
dx/dt=-x/tau_plume+(2./tau_plume)**.5*xi : 1
y=clip(x,0,inf) : 1
’’’
plume=NeuronGroup(2,model=eq_plumes) # 1 odor

# Receptor neurons
Fmax=40*Hz # maximum firing rate
tau=20*ms
Imax=1/(1-exp(-1/(Fmax*tau))) # maximum input current

eq_receptors=’’’
dv/dt=(Imax*hill_function(c)-v)/tau : 1
c : 1 # concentrations (relative to activation constant)
’’’

receptors=NeuronGroup(N,model=eq_receptors,threshold=1,reset=0)

@network_operation
def odor_to_nose():

# Send odor plume to the receptors
receptors.c=I1*c1*clip(plume.x[0],0,Inf)+I2*c2*clip(plume.x[0],0,Inf)

odors=[odor(N),odor(N)]
c1,c2=odors

# Decoder neurons
M=len(tuning)
eq_decoders=’’’
dv/dt=-v/taud + sigma*(2/taud)**.5*xi : 1
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’’’
decoders=NeuronGroup(M,model=eq_decoders,threshold=1,reset=0)
S2=SpikeMonitor(decoders)

# Synapses
syn=Connection(receptors,decoders,’v’)
for i in range(len(decoders)):

for j in weights[:,i].nonzero()[0]:
syn[j,i]=weights[j,i]

# Run
I1,I2=intensity,0
print "Started"
# Odor A, increasing concentration
for I1 in intensity*exp(linspace(log(.1),log(10),20)):

run(1*second,report="text")
I1=0
# Odor B, increasing concentration
for I2 in intensity*exp(linspace(log(.1),log(10),20)):

run(1*second,report="text")

# Figure (11B)
spikes=array(S2.spikes) # i,t
n,t=spikes[:,0],spikes[:,1]
subplot(211) # Raster plot
plot(t,n,’k.’)
subplot(212) # Odor concentrations
semilogy(linspace(0,20,20),exp(linspace(log(.1),log(10),20)),’b’)
semilogy(linspace(20,40,20),exp(linspace(log(.1),log(10),20)),’r’)
plot([0,40],[1,1],’k--’)
show()

Example: Fig11B_olfaction_stdp_learning (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 11B. Learning to recognize odors. (long simulation)

Caption (Fig. 11B). After learning, responses of postsynaptic neurons, ordered by tuning ratio, to odor A (blue) and
odor B (red), with an increasing concentration (0.1 to 10, where 1 is odor concentration in the learning phase).

After this script, run the other file: Fig11B_olfaction_stdp_testing.py.

from brian import *
from params import *
from brian.experimental.connectionmonitor import *
import numpy

bmin,bmax=-7,-1

def odor(N):
# Returns a random vector of binding constants
return 10**(rand(N)*(bmax-bmin)+bmin)

def hill_function(c,K=1.,n=3.):
’’’
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Hill function:

* c = concentration

* K = half activation constant (choose K=1 for relative concentrations)

* n = Hill coefficient
’’’
return (c**n)/(c**n+K**n)

N=5000 # number of receptors

seed(31415) # Get the same neurons every time
intensity=3000.

# Odor plumes
tau_plume=75*ms
eq_plumes=’’’
dx/dt=-x/tau_plume+(2./tau_plume)**.5*xi : 1
y=clip(x,0,inf) : 1
’’’
plume=NeuronGroup(1,model=eq_plumes) # 1 odor

# Receptor neurons
Fmax=40*Hz # maximum firing rate
tau=20*ms
Imax=1/(1-exp(-1/(Fmax*tau))) # maximum input current

eq_receptors=’’’
dv/dt=(Imax*hill_function(c)-v)/tau : 1
c : 1 # concentrations (relative to activation constant)
’’’

receptors=NeuronGroup(N,model=eq_receptors,threshold=1,reset=0)

@network_operation
def odor_to_nose():

# Send odor plume to the receptors
receptors.c=I1*c1*clip(plume.x[0],0,Inf)

odors=[odor(N),odor(N)] # two odors
c1=odors[0]
stimuli=[]
# A random odor is presented every 200 ms
@network_operation(clock=EventClock(dt=200*ms))
def change_odor():

global c1
nodor=randint(len(odors))
c1=odors[nodor]
stimuli.append((float(defaultclock.t),float(nodor)))

# Decoder neurons
M=30
eq_decoders=’’’
dv/dt=-v/taud + sigma*(2/taud)**.5*xi : 1
’’’
decoders=NeuronGroup(M,model=eq_decoders,threshold=1,reset=0)
S2=SpikeMonitor(decoders)

# Random synapses
syn=Connection(receptors,decoders,’v’,sparseness=Nsynapses*1./N,weight=w0)
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# STDP
eqs_stdp=’’’
dApre/dt=-Apre/tau_pre : 1
Apost : 1
’’’
pre=’’’
Apre+=a_pre
#w+=0
’’’
post=’’’
Apost+=0
w+=Apre+b_post*w
’’’
stdp=STDP(syn,eqs_stdp,pre=pre,post=post,wmax=Inf)
MC=ConnectionMonitor(syn,store=True,clock=EventClock(dt=record_period))

@network_operation(EventClock(dt=IP_period))
def intrinsic_plasticity(): # synaptic scaling

# Increases weights of all synapses
syn.W.alldata+=syn.W.alldata*IP_rate*IP_period

# Record the evolution of weights
weights=[]
@network_operation(EventClock(dt=record_period))
def recordW():

Z=syn.W[:,0].copy()
weights.append(Z)

I1=intensity
print "Started"
run(duration,report="text")

# Save data
wsave=[(t,M.todense()) for (t,M) in MC.values]
numpy.save("weights.npy",array(zip(*wsave)[1])) # 3D array (t,i,j)
numpy.save("spikesout.npy",array(S2.spikes))
numpy.save("stimuli.npy",array(stimuli))

Example: Fig9B_olfaction (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Figure 9B.

Caption (Fig. 9B). Top, Fluctuating concentration of three odors (A: blue, B: red, C: black). Middle, spiking responses
of olfactory receptors. Bottom, Responses of postsynaptic neurons from the assembly selective to A (blue) and to B
(red). Stimuli are presented is sequence: 1) odor A alone, 2) odor B alone, 3) odor B alone with twice stronger
intensity, 4) odor A with distracting odor C (same intensity), 5) odors A and B (same intensity).

from brian import *

bmin,bmax=-7,-1

def odor(N):
# Returns a random vector of binding constants
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return 10**(rand(N)*(bmax-bmin)+bmin)

def hill_function(c,K=1.,n=3.):
’’’
Hill function:

* c = concentration

* K = half activation constant (choose K=1 for relative concentrations)

* n = Hill coefficient
’’’
return (c**n)/(c**n+K**n)

N=5000 # number of receptors

# Odors
seed(31415) # Get the same neurons every time
intensity=3000.
c1=odor(N)
c2=odor(N)
c0=c1
I1,I2=intensity,intensity

# Odor plumes (fluctuating concentrations)
tau_plume=75*ms
eq_plumes=’’’
dx/dt=-x/tau_plume+(2./tau_plume)**.5*xi : 1
y=clip(x,0,inf) : 1
’’’
plume=NeuronGroup(2,model=eq_plumes) # 2 odors

# Receptor neurons
Fmax=40*Hz # maximum firing rate
tau=20*ms
Imax=1/(1-exp(-1/(Fmax*tau))) # maximum input current

eq_receptors=’’’
dv/dt=(Imax*hill_function(c)-v)/tau : 1
c : 1 # concentrations (relative to activation constant)
’’’

receptors=NeuronGroup(N,model=eq_receptors,threshold=1,reset=0)
receptors.c=c1

@network_operation
def odor_to_nose():

# Send odor plume to the receptors
receptors.c=I1*c1*clip(plume.x[0],0,Inf)+I2*c2*clip(plume.x[1],0,Inf)

# Decoder neurons
M=200
taud=8*ms
sigma=.15
eq_decoders=’’’
dv/dt=-v/taud + sigma*(2/taud)**.5*xi : 1
’’’
decoders=NeuronGroup(2*M,model=eq_decoders,threshold=1,reset=0)
# First M neurons encode odor A, next M neurons encode odor B

# Synapses
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syn=Connection(receptors,decoders,’v’)

# Connectivity according to synchrony partitions
bhalf=.5*(bmin+bmax) # select only those that are well activated
u=2*(log(c1)/log(10)-bhalf)/(bmax-bmin) # normalized binding constants for odor A
for i in range(M):

which=((u>=i*1./M) & (u<(i+1)*1./M)) # we divide in M groups with similar values
if sum(which)>0:

w=1./sum(which) # total synaptic weight for a postsynaptic neuron is 1
syn[:,i]=w*which

u=2*(log(c2)/log(10)-bhalf)/(bmax-bmin)
for i in range(M): # normalized binding constants for odor B

which=((u>=i*1./M) & (u<(i+1)*1./M))
if sum(which)>0:

w=1./sum(which)
syn[:,2*M-1-i]=w*which

# Record odor concentration and output spikes
O=StateMonitor(plume,’y’,record=True)
S=SpikeMonitor(receptors)
S2=SpikeMonitor(decoders)

print "Odor A"
I1,I2=intensity,0
run(2*second)
print "Odor B"
I1,I2=0,intensity
run(2*second)
print "Odor B x2"
I1,I2=0,2*intensity
run(2*second)
print "Odor A + odor C"
I1,I2=intensity,intensity
old_c2=c2
c2=odor(N) # different odor
run(2*second)
print "Odor A + odor B"
I1,I2=intensity,intensity
c2=old_c2
run(2*second)

t=O.times/ms

# Figure (9B)
subplot(311) # odor fluctuations
plot(t[t<2000],O[0][t<2000],’b’)
plot(t[(t>=2000) & (t<4000)],O[1][(t>=2000) & (t<4000)],’r’)
plot(t[(t>=4000) & (t<6000)],2*O[1][(t>=4000) & (t<6000)],’r’)
plot(t[(t>=6000) & (t<8000)],O[0][(t>=6000) & (t<8000)],’b’)
plot(t[(t>=6000) & (t<8000)],O[1][(t>=6000) & (t<8000)],’k’)
plot(t[(t>=8000) & (t<10000)],O[1][(t>=8000) & (t<10000)],’r’)
plot(t[(t>=8000) & (t<10000)],O[0][(t>=8000) & (t<10000)],’b’)
xlim(0,10000)
xticks([])
subplot(312)
raster_plot(S)
xlim(0,10000)
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ylim(2500,2600) # 100 random neurons
xticks([])
subplot(313)
raster_plot(S2)
ylim(100,300)
xlim(0,10000)

show()

Example: params (frompapers/computing with neural synchrony/olfaction)

Brette R (2012). Computing with neural synchrony. PLoS Comp Biol. 8(6): e1002561.
doi:10.1371/journal.pcbi.1002561

Parameters for the olfactory model with STDP

from brian import *

N=5000
# Coincidence detectors
sigma=.15
taud=8*ms
# Connections
Nsynapses=50
w0=150./(0.02*N)
# STDP
factor=0.05
a_pre=0.06*factor
b_post=-1.*factor
tau_pre=3*ms
# Intrinsic plasticity: non-specific weight increase
IP_period=10*ms
IP_rate=-b_post*5*Hz # target firing rate = 5 Hz
# Simulation control
record_period=1*second
duration=100*second

3.2.15 interface

Example: interface (interface)

Interface example Install cherrypy for this example Then run the script and go to http://localhost:8080 on your web
browser You can use cherrypy to write html interfaces to your code.

from brian import *
import cherrypy
import os.path

# The server is defined here
class MyInterface(object):

@cherrypy.expose
def index(self): # redirect to the html page we wrote

return ’<meta HTTP-EQUIV="Refresh" content="0;URL=index.html">’

@cherrypy.expose
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def runscript(self, we="1.62", wi="-9", **kwd): # ’runscript’ is the script name
# we and wi are the names of form fields
we = float(we)
wi = float(wi)
# From minimalexample
reinit_default_clock()
eqs = ’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’
P = NeuronGroup(4000, model=eqs, threshold= -50 * mV, reset= -60 * mV)
P.v = -60 * mV + 10 * mV * rand(len(P))
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ’ge’)
Ci = Connection(Pi, P, ’gi’)
Ce.connect_random(Pe, P, 0.02, weight=we * mV)
Ci.connect_random(Pi, P, 0.02, weight=wi * mV)
M = SpikeMonitor(P)
run(.5 * second)
clf()
raster_plot(M)
savefig(’image.png’)
# Redirect to the html page we wrote
return ’<meta HTTP-EQUIV="Refresh" content="0;URL=results.html">’

# Set the directory for static files
current_dir = os.path.dirname(os.path.abspath(__file__))
conf = {’/’: {’tools.staticdir.on’:True,

’tools.staticdir.dir’:current_dir}}

# Start the server
cherrypy.quickstart(MyInterface(), config=conf)

3.2.16 synapses

Example: licklider (synapses)

Spike-based adaptation of Licklider’s model of pitch processing (autocorrelation with delay lines) with phase locking.

Romain Brette

from brian import *

defaultclock.dt = .02 * ms

# Ear and sound
max_delay = 20 * ms # 50 Hz
tau_ear = 1 * ms
sigma_ear = .1
eqs_ear = ’’’
dx/dt=(sound-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1
sound=5*sin(2*pi*frequency*t)**3 : 1 # nonlinear distorsion
#sound=5*(sin(4*pi*frequency*t)+.5*sin(6*pi*frequency*t)) : 1 # missing fundamental
frequency=(200+200*t*Hz)*Hz : Hz # increasing pitch
’’’
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receptors = NeuronGroup(2, model=eqs_ear, threshold=1, reset=0, refractory=2 * ms)

# Coincidence detectors
min_freq = 50 * Hz
max_freq = 1000 * Hz
N = 300
tau = 1 * ms
sigma = .1
eqs_neurons = ’’’
dv/dt=-v/tau+sigma*(2./tau)**.5*xi : 1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0)
synapses = Synapses(receptors, neurons, model=’w : 1’, pre=’v+=w’)
synapses[:,:]=True
synapses.w=0.5
synapses.delay[1, :] = 1. / exp(linspace(log(min_freq / Hz), log(max_freq / Hz), N))
spikes = SpikeMonitor(neurons)

run(500 * ms)
raster_plot(spikes)
ylabel(’Frequency’)
yticks([0, 99, 199, 299], array(1. / synapses.delay[1, [0, 99, 199, 299]], dtype=int))
show()

Example: probabilistic_synapses (synapses)

Probabilistic synapses

Seems to work.

from brian import *

N=20
tau=5*ms
input=PoissonGroup(2,rates=20*Hz)
neurons=NeuronGroup(N,model=’dv/dt=-v/tau : 1’)

S=Synapses(input,neurons,model="""w : 1
p : 1 # transmission probability""",

pre="v+=w*(rand()<p)")
# Transmission probabilities
S[:,:]=True
S.w=0.5
S.p[0,:]=linspace(0,1,N) # transmission probability between 0 and 1
S.p[1,:]=linspace(0,1,N)[::-1] # reverse order for the second input

M=StateMonitor(neurons,’v’,record=True)

run(500*ms)

for i in range(N):
plot(M.times/ms,M[i]+i,’k’)

show()
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Example: CUBA (synapses)

CUBA example with delays.

Connection (no delay): 3.5 s DelayConnection: 5.7 s Synapses (with precomputed offsets): 6.6 s # 6.9 s Synapses
with weave: 6.4 s Synapses with zero delays: 5.2 s

from brian import *
import time

start_time = time.time()
taum = 20 * ms
taue = 5 * ms
taui = 10 * ms
Vt = -50 * mV
Vr = -60 * mV
El = -49 * mV

eqs = Equations(’’’
dv/dt = (ge+gi-(v-El))/taum : volt
dge/dt = -ge/taue : volt
dgi/dt = -gi/taui : volt
’’’)

P = NeuronGroup(4000, model=eqs, threshold=Vt, reset=Vr, refractory=5 * ms)
P.v = Vr
P.ge = 0 * mV
P.gi = 0 * mV

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
we = (60 * 0.27 / 10) * mV # excitatory synaptic weight (voltage)
wi = (-20 * 4.5 / 10) * mV # inhibitory synaptic weight

Se = Synapses(Pe, P, model = ’w : 1’, pre = ’ge += we’)
Si = Synapses(Pi, P, model = ’w : 1’, pre = ’gi += wi’)
Se[:,:]=0.02
Si[:,:]=0.02
Se.delay=’rand()*ms’
Si.delay=’rand()*ms’

P.v = Vr + rand(len(P)) * (Vt - Vr)

# Record the number of spikes
Me = PopulationSpikeCounter(Pe)
Mi = PopulationSpikeCounter(Pi)
# A population rate monitor
M = PopulationRateMonitor(P)

print "Network construction time:", time.time() - start_time, "seconds"
print len(P), "neurons in the network"
print "Simulation running..."
run(1 * msecond)
start_time = time.time()

run(1 * second)

duration = time.time() - start_time
print "Simulation time:", duration, "seconds"
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print Me.nspikes, "excitatory spikes"
print Mi.nspikes, "inhibitory spikes"
plot(M.times / ms, M.smooth_rate(2 * ms, ’gaussian’))
show()

Example: delayed_stdp (synapses)

Delayed STDP

from brian import *
import time

N = 1
taum = 10 * ms
taupre = 20 * ms
taupost = taupre
Ee = 0 * mV
vt = -54 * mV
vr = -74 * mV
El = -74 * mV
taue = 5 * ms
F = 20 * Hz
dApre = .1
dApost = -dApre * taupre / taupost * 2.

eqs_neurons = ’’’
dv/dt=(ge*(Ee-vr)+El-v)/taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1
’’’

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, model=eqs_neurons, threshold=vt, reset=vr)
S = Synapses(input, neurons,

model=’’’w:1
dApre/dt=-Apre/taupre : 1 #(event-driven)
dApost/dt=-Apost/taupost : 1 #(event-driven)’’’,

pre=(’ge+=w’,
’’’w=clip(w+Apost,0,inf)

Apre+=dApre’’’),
post=’’’Apost+=dApost

w=clip(w+Apre,0,inf)’’’)
neurons.v = vr
S[:,:]=True
S.w=10
S.delay[1][0,0]=3*ms # delayed trace (try 0 ms to see the difference)

M=StateMonitor(S,’w’,record=0)
Mpre=StateMonitor(S,’Apre’,record=0)
Mpost=StateMonitor(S,’Apost’,record=0)
Mv=StateMonitor(neurons,’v’,record=0)

run(10*second,report=’text’)

subplot(211)
plot(M.times/ms,M[0])
plot(M.times/ms,Mpre[0],’r’)
plot(M.times/ms,Mpost[0],’k’)
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subplot(212)
plot(Mv.times/ms,Mv[0])
show()

Example: jeffress (synapses)

Jeffress model, adapted with spiking neuron models. A sound source (white noise) is moving around the head. Delay
differences between the two ears are used to determine the azimuth of the source. Delays are mapped to a neural place
code using delay lines (each neuron receives input from both ears, with different delays).

Romain Brette

from brian import *
from time import time

defaultclock.dt = .02 * ms
dt = defaultclock.dt

# Sound
sound = TimedArray(10 * randn(50000)) # white noise

# Ears and sound motion around the head (constant angular speed)
sound_speed = 300 * metre / second
interaural_distance = 20 * cm # big head!
max_delay = interaural_distance / sound_speed
print "Maximum interaural delay:", max_delay
angular_speed = 2 * pi * radian / second # 1 turn/second
tau_ear = 1 * ms
sigma_ear = .1
eqs_ears = ’’’
dx/dt=(sound(t-delay)-x)/tau_ear+sigma_ear*(2./tau_ear)**.5*xi : 1
delay=distance*sin(theta) : second
distance : second # distance to the centre of the head in time units
dtheta/dt=angular_speed : radian
’’’
ears = NeuronGroup(2, model=eqs_ears, threshold=1, reset=0, refractory=2.5 * ms)
ears.distance = [-.5 * max_delay, .5 * max_delay]
traces = StateMonitor(ears, ’x’, record=True)

# Coincidence detectors
N = 300
tau = 1 * ms
sigma = .1
eqs_neurons = ’’’
dv/dt=-v/tau+sigma*(2./tau)**.5*xi : 1
’’’
neurons = NeuronGroup(N, model=eqs_neurons, threshold=1, reset=0)

synapses = Synapses(ears,neurons,model=’w:1’,pre=’v+=w’)
synapses[:,:]=True
synapses.w=.5
synapses.delay[0, :] = linspace(0 * ms, 1.1 * max_delay, N)
synapses.delay[1, :] = linspace(0 * ms, 1.1 * max_delay, N)[::-1]

spikes = SpikeMonitor(neurons)

run(1*ms)
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t1=time()
run(1000 * ms)
t2=time()
print "It took",t2-t1,"s"
raster_plot(spikes)
show()

Example: poisson_synapses (synapses)

This example shows how to efficiently simulate neurons with a large number of Poisson inputs targetting arbi-
trarily complex synapses. The approach is very similiar to what the PoissonInput class does internally, but
PoissonInput cannot be combined with the Synapses class. You could also just use many PoissonGroup
objects as inputs, but this is very slow and memory consuming.

from brian import *

# Poisson inputs
M = 1000 # number of Poisson inputs
max_rate = 100

# Neurons
N = 50 # number of neurons
tau = 10 * ms
E_exc = 0 * mV
E_L = -70 * mV
G = NeuronGroup(N, model=’dvm/dt = -(vm - E_L)/tau : mV’)
G.rest()

# Dummy neuron group
P = NeuronGroup(1, ’v : 1’, threshold= -1, reset=0) # spikes every timestep

# time varying rate
def varying_rate(t):

return defaultclock.dt * max_rate * (0.5 + 0.5 * sin(2 * pi * 5 * t))

# Synaptic connections: binomial(cellM, varying_rate(t)) gives the number of
# events per timestep. The synapse model is a conductance-based instanteneous
# jump in postsynaptic membrane potential
S = Synapses(P, G, model=’’’

J : 1
cellM : 1

’’’,
pre=’vm += binomial(cellM, varying_rate(t)) * J * (E_exc - vm)’)

S[:, :] = True
S.cellM = M #we need one value for M per cell, so that binomial is vectorized
S.J = 0.0005

mon = StateMonitor(G, ’vm’, record=True)
run(1 * second, report=’text’)

mon.plot()
show()

Example: gapjunctions (synapses)

Neurons with gap junctions
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from brian import *

N = 10
v0=1.05
tau=10*ms

eqs = ’’’
dv/dt=(v0-v+Igap)/tau : 1
Igap : 1 # gap junction current
’’’

neurons = NeuronGroup(N, model=eqs, threshold=1, reset=0)
neurons.v=linspace(0,1,N)
trace = StateMonitor(neurons, ’v’, record=[0, 5])

S=Synapses(neurons,model=’’’w:1 # gap junction conductance
Igap=w*(v_pre-v_post): 1’’’)

S[:,:]=True
neurons.Igap=S.Igap
S.w=.02

run(500*ms)

plot(trace.times / ms, trace[0])
plot(trace.times / ms, trace[5])
show()

Example: probabilistic_synapses2 (synapses)

Probabilistic synapses - Katz model

from brian import *
from numpy.random import binomial

Nin=1000
Nout=25
input=PoissonGroup(Nin,rates=2*Hz)
tau=10*ms
neurons=NeuronGroup(Nout,model="dv/dt=-v/tau:1",threshold=35*50./5,reset=0)
S=Synapses(input,neurons,model=’’’w:1 # PSP size for one quantum

nvesicles:1 # Number of vesicles (n is reserved)
p:1 # Release probability’’’,

pre =’’’v+=binomial(nvesicles,p)*w’’’)
S[:,:]=True # all-to-all
S.w=’rand()’
S.nvesicles=50
S.p=’rand()’

S=SpikeMonitor(neurons)

run(1000*ms)

raster_plot(S)
show()
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Example: multiple_delays (synapses)

Multiple delays

from brian import *

P=NeuronGroup(1,model=’dv/dt=1/(20*ms):1’,threshold=1,reset=0)
Q=NeuronGroup(1,model=’v:1’)
S=Synapses(P,Q,model=’w:1’,pre=’v+=w’)
M=StateMonitor(Q,’v’,record=True)

S[0,0]=2
S.w[0,0,0]=1.
S.w[0,0,1]=.5
S.delay[0,0,0]=.5*ms
S.delay[0,0,1]=1*ms

run(60*ms)

plot(M.times/ms,M[0])
show()

Example: one_synapse_bis (synapses)

One synapse within several possibilities. Synapse from 2->3.

from brian import *

P=NeuronGroup(5,model=’dv/dt=1/(10*ms):1’,threshold=1,reset=0)
Q=NeuronGroup(4,model=’v:1’)
S=Synapses(P,Q,model=’w:1’,pre=’v+=w’)
M=StateMonitor(Q,’v’,record=True)

S[2,3]=True
S.w[2,3]=1.
S.delay[2,3]=.5*ms

run(40*ms)

for i in range(4):
plot(M.times/ms,M[i]+i*2,’k’)

show()

Example: two_synapses (synapses)

One synapse within several possibilities. Synapse from 0->2,3.

from brian import *

P=NeuronGroup(2,model=’dv/dt=1/(10*ms):1’,threshold=1,reset=0)
Q=NeuronGroup(4,model=’v:1’)
S=Synapses(P,Q,model=’w:1’,pre=’v+=w’)
M=StateMonitor(Q,’v’,record=True)

S[0,2]=True
S[0,3]=True
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S.w[0,:]=[1.,.7]
S.delay[0,:]=[.5*ms,.7*ms]

run(40*ms)

for i in range(4):
plot(M.times/ms,M[i]+i*2,’k’)

show()

Example: noisy_ring (synapses)

Integrate-and-fire neurons with noise

from brian import *

tau = 10 * ms
sigma = .5
N = 100
J = -1
mu = 2

eqs = """
dv/dt=mu/tau+sigma/tau**.5*xi : 1
"""

group = NeuronGroup(N, model=eqs, threshold=1, reset=0)

C = Synapses(group, model=’w:1’, pre=’v+=w’)
C[:,:]=’j==((i+1)%N)’
C.w=J

S = SpikeMonitor(group)
trace = StateMonitor(group, ’v’, record=True)

run(500 * ms)
i, t = S.spikes[-1]

subplot(211)
raster_plot(S)
subplot(212)
plot(trace.times / ms, trace[0])
show()

Example: nonlinear_synapses (synapses)

NMDA synapses

from brian import *
import time

a=1/(10*ms)
b=1/(10*ms)
c=1/(10*ms)

input=NeuronGroup(2,model=’dv/dt=1/(10*ms):1’, threshold=1, reset=0)
neurons = NeuronGroup(1, model="""dv/dt=(gtot-v)/(10*ms) : 1
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gtot : 1""")
S=Synapses(input,neurons,

model=’’’dg/dt=-a*g+b*x*(1-g) : 1
dx/dt=-c*x : 1
w : 1 # synaptic weight

’’’,
pre=’x+=w’) # NMDA synapses

neurons.gtot=S.g
S[:,:]=True
S.w=[1.,10.]
input.v=[0.,0.5]

M=StateMonitor(S,’g’,record=True)
Mn=StateMonitor(neurons,’v’,record=0)

run(100*ms)

subplot(211)
plot(M.times/ms,M[0])
plot(M.times/ms,M[1])
subplot(212)
plot(Mn.times/ms,Mn[0])

show()

Example: short_term_plasticity2 (synapses)

Example with short term plasticity, with event-driven updates defined by differential equations.

from brian import *

tau_e = 3 * ms
taum = 10 * ms
A_SE = 250 * pA
Rm = 100 * Mohm
N = 10

eqs = ’’’
dx/dt=rate : 1
rate : Hz
’’’

input = NeuronGroup(N, model=eqs, threshold=1., reset=0)
input.rate = linspace(5 * Hz, 30 * Hz, N)

eqs_neuron = ’’’
dv/dt=(Rm*i-v)/taum:volt
di/dt=-i/tau_e:amp
’’’
neuron = NeuronGroup(N, model=eqs_neuron)

taud=1*ms
tauf=100*ms
U=.1
#taud=100*ms
#tauf=10*ms
#U=.6
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S=Synapses(input,neuron,
model=’’’w : 1

dx/dt=(1-x)/taud : 1 (event-driven)
du/dt=(U-u)/tauf : 1 (event-driven)

’’’,
pre=’’’i+=w*u*x

x*=(1-u)
u+=U*(1-u)’’’)

S[:,:]=’i==j’ # one to one connection
S.w=A_SE
# Initialization of STP variables
S.x = 1
S.u = U

trace = StateMonitor(neuron, ’v’, record=[0, N - 1])

run(1000 * ms)
subplot(211)
plot(trace.times / ms, trace[0] / mV)
title(’Vm’)
subplot(212)
plot(trace.times / ms, trace[N - 1] / mV)
title(’Vm’)
show()

Example: one_synapse (synapses)

One synapse

from brian import *

P=NeuronGroup(1,model=’dv/dt=1/(10*ms):1’,threshold=1,reset=0)
Q=NeuronGroup(1,model=’v:1’)
S=Synapses(P,Q,model=’w:1’,pre=’v+=w’)
M=StateMonitor(Q,’v’,record=True)

S[0,0]=True
S.w[0,0]=1.
S.delay[0,0]=.5*ms

run(40*ms)

plot(M.times/ms,M[0])
show()

Example: STDP1 (synapses)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

This simulation takes a long time!

from brian import *
from time import time

N = 1000
taum = 10 * ms
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taupre = 20 * ms
taupost = taupre
Ee = 0 * mV
vt = -54 * mV
vr = -60 * mV
El = -74 * mV
taue = 5 * ms
F = 15 * Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = ’’’
dv/dt=(ge*(Ee-vr)+El-v)/taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1
’’’

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, model=eqs_neurons, threshold=vt, reset=vr)
S = Synapses(input, neurons,

model=’’’w:1
Apre:1
Apost:1’’’,
pre=’’’ge+=w
Apre=Apre*exp((lastupdate-t)/taupre)+dApre
Apost=Apost*exp((lastupdate-t)/taupost)
w=clip(w+Apost,0,gmax)’’’,
post=’’’
Apre=Apre*exp((lastupdate-t)/taupre)
Apost=Apost*exp((lastupdate-t)/taupost)+dApost
w=clip(w+Apre,0,gmax)’’’)

neurons.v = vr
S[:,:]=True
S.w=’rand()*gmax’

rate = PopulationRateMonitor(neurons)

start_time = time()
run(100 * second, report=’text’)
print "Simulation time:", time() - start_time

subplot(311)
plot(rate.times / second, rate.smooth_rate(100 * ms))
subplot(312)
plot(S.w[:] / gmax, ’.’)
subplot(313)
hist(S.w[:] / gmax, 20)
show()

Example: transient_sync (synapses)

Transient synchronisation in a population of noisy IF neurons with distance-dependent synaptic weights (organised as
a ring)
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from brian import *
import time

tau = 10 * ms
N = 100
v0 = 5 * mV
sigma = 4 * mV
group = NeuronGroup(N, model=’dv/dt=(v0-v)/tau + sigma*xi/tau**.5 : volt’, \

threshold=10 * mV, reset=0 * mV)
C = Synapses(group,model=’w:1’,pre=’v+=w’)
C[:,:]=True
C.w=’.4 * mV * cos(2. * pi * (i - j) * 1. / N)’
S = SpikeMonitor(group)
R = PopulationRateMonitor(group)
group.v = rand(N) * 10 * mV

run(5000 * ms,report=’text’)
subplot(211)
raster_plot(S)
subplot(223)
imshow(C.w[:].reshape((N,N)), interpolation=’nearest’)
title(’Synaptic connections’)
subplot(224)
plot(R.times / ms, R.smooth_rate(2 * ms, filter=’flat’))
title(’Firing rate’)
show()

Example: synapse_construction (synapses)

An example of constructing synapses.

from brian import *
import time

N=10

P=NeuronGroup(N,model=’dv/dt=1/(10*ms):1’,threshold=1,reset=0)
Q=NeuronGroup(N,model=’v:1’)
S=Synapses(P,Q,model=’w:1’,pre=’v+=w’)

S[:,:]=’i==j’
S.w=’2*i’

M=StateMonitor(Q,’v’,record=True)

run(40*ms)

for i in range(N):
plot(M.times/ms,M[i]+i*2,’k’)

show()
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Example: Diesmann_et_al_1999 (synapses)

Synfire chains

M. Diesmann et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature 402,
529-533.

from brian import *

# Neuron model parameters
Vr = -70 * mV
Vt = -55 * mV
taum = 10 * ms
taupsp = 0.325 * ms
weight = 4.86 * mV
# Neuron model
eqs = ’’’
dV/dt=(-(V-Vr)+x)*(1./taum) : volt
dx/dt=(-x+y)*(1./taupsp) : volt
dy/dt=-y*(1./taupsp)+25.27*mV/ms+\

(39.24*mV/ms**0.5)*xi : volt
’’’
# Neuron groups
P = NeuronGroup(N=1000, model=eqs,

threshold=Vt, reset=Vr, refractory=1 * ms)
Pinput = PulsePacket(t=50 * ms, n=85, sigma=1 * ms)
# The network structure
Pgp = [ P.subgroup(100) for i in range(10)]
C = Synapses(P, P, model=’w:volt’, pre=’y+=w’)
for i in range(9):

C[Pgp[i], Pgp[i + 1]]=True
C.w[Pgp[i], Pgp[i + 1]]=weight

Cinput = Synapses(Pinput, Pgp[0], model=’w:volt’, pre=’y+=w’)
Cinput[:,:]=True
Cinput.w[:,:]=weight
# Record the spikes
Mgp = [SpikeMonitor(p) for p in Pgp]
Minput = SpikeMonitor(Pinput)
monitors = [Minput] + Mgp
# Setup the network, and run it
P.V = Vr + rand(len(P)) * (Vt - Vr)
run(100 * ms)
# Plot result
raster_plot(showgrouplines=True, *monitors)
show()

Example: barrelcortex (synapses)

Late Emergence of the Whisker Direction Selectivity Map in the Rat Barrel Cortex Kremer Y, Leger JF, Goodman DF,
Brette R, Bourdieu L (2011). J Neurosci 31(29):10689-700.

Development of direction maps with pinwheels in the barrel cortex. Whiskers are deflected with random moving bars.
N.B.: network construction can be long.

In this version, STDP is faster than in the paper so that the script runs in just a few minutes.

Original time: 4m13 s (without construction) With Synapses: 4m36 s
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from brian import *
import time

# Uncomment if you have a C compiler
# set_global_preferences(useweave=True,usecodegen=True,usecodegenweave=True,usenewpropagate=True,usecstdp=True)

t1=time.time()
# PARAMETERS
# Neuron numbers
M4,M23exc,M23inh=22,25,12 # side of each barrel (in neurons)
N4,N23exc,N23inh=M4**2,M23exc**2,M23inh**2 # neurons per barrel
barrelarraysize=5 # Choose 3 or 4 if memory error
Nbarrels=barrelarraysize**2
# Stimulation
stim_change_time = 5*ms
Fmax=.5/stim_change_time # maximum firing rate in layer 4 (.5 spike / stimulation)
# Neuron parameters
taum,taue,taui=10*ms,2*ms,25*ms
El=-70*mV
Vt,vt_inc,tauvt=-55*mV,2*mV,50*ms # adaptive threshold
# STDP
taup,taud=5*ms,25*ms
Ap,Ad=.05,-.04
# EPSPs/IPSPs
EPSP,IPSP = 1*mV,-1*mV
EPSC = EPSP * (taue/taum)**(taum/(taue-taum))
IPSC = IPSP * (taui/taum)**(taum/(taui-taum))
Ap,Ad=Ap*EPSC,Ad*EPSC
# Model: IF with adaptive threshold
eqs=’’’
dv/dt=(ge+gi+El-v)/taum : volt
dge/dt=-ge/taue : volt
dgi/dt=-gi/taui : volt
dvt/dt=(Vt-vt)/tauvt : volt # adaptation
x : 1
y : 1
’’’
# Tuning curve
tuning=lambda theta:clip(cos(theta),0,Inf)*Fmax

# Layer 4
layer4=PoissonGroup(N4*Nbarrels)
barrels4 = dict(((i, j), layer4.subgroup(N4)) for i in xrange(barrelarraysize) for j in xrange(barrelarraysize))
barrels4active = dict((ij, False) for ij in barrels4)
barrelindices = dict((ij, slice(b._origin, b._origin+len(b))) for ij, b in barrels4.iteritems())
layer4.selectivity = zeros(len(layer4))
for (i, j), inds in barrelindices.iteritems():

layer4.selectivity[inds]=linspace(0,2*pi,N4)

# Layer 2/3
layer23=NeuronGroup(Nbarrels*(N23exc+N23inh),model=eqs,threshold=’v>vt’,reset=’v=El;vt+=vt_inc’,refractory=2*ms)
layer23.v=El
layer23.vt=Vt

# Layer 2/3 excitatory
layer23exc=layer23.subgroup(Nbarrels*N23exc)
x,y=meshgrid(arange(M23exc)*1./M23exc,arange(M23exc)*1./M23exc)
x,y=x.flatten(),y.flatten()
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barrels23 = dict(((i, j), layer23exc.subgroup(N23exc)) for i in xrange(barrelarraysize) for j in xrange(barrelarraysize))
for i in range(barrelarraysize):

for j in range(barrelarraysize):
barrels23[i,j].x=x+i
barrels23[i,j].y=y+j

# Layer 2/3 inhibitory
layer23inh=layer23.subgroup(Nbarrels*N23inh)
x,y=meshgrid(arange(M23inh)*1./M23inh,arange(M23inh)*1./M23inh)
x,y=x.flatten(),y.flatten()
barrels23inh = dict(((i, j), layer23inh.subgroup(N23inh)) for i in xrange(barrelarraysize) for j in xrange(barrelarraysize))
for i in range(barrelarraysize):

for j in range(barrelarraysize):
barrels23inh[i,j].x=x+i
barrels23inh[i,j].y=y+j

print "Building synapses, please wait..."
# Feedforward connections
feedforward=Synapses(layer4,layer23exc,

model=’’’w:volt
A_pre:1
A_post:1’’’,
pre=’’’ge+=w
A_pre=A_pre*exp((lastupdate-t)/taup)+Ap
A_post=A_post*exp((lastupdate-t)/taud)
w=clip(w+A_post,0,EPSC)’’’,
post=’’’
A_pre=A_pre*exp((lastupdate-t)/taup)
A_post=A_post*exp((lastupdate-t)/taud)+Ad
w=clip(w+A_pre,0,EPSC)’’’)

for i in range(barrelarraysize):
for j in range(barrelarraysize):

feedforward[barrels4[i,j],barrels23[i,j]]=.5
feedforward.w[barrels4[i,j],barrels23[i,j]]=EPSC*.5

# Excitatory lateral connections
recurrent_exc=Synapses(layer23exc,layer23,model=’w:volt’,pre=’ge+=w’)
recurrent_exc[layer23exc,layer23exc]=’.15*exp(-.5*(((layer23exc.x[i]-layer23exc.x[j])/.4)**2+((layer23exc.y[i]-layer23exc.y[j])/.4)**2))’
recurrent_exc.w[layer23exc,layer23exc]=EPSC*.3
recurrent_exc[layer23exc,layer23inh]=’.15*exp(-.5*(((layer23exc.x[i]-layer23inh.x[j])/.4)**2+((layer23exc.y[i]-layer23inh.y[j])/.4)**2))’
recurrent_exc.w[layer23exc,layer23inh]=EPSC

# Inhibitory lateral connections
recurrent_inh=Synapses(layer23inh,layer23exc,model=’w:volt’,pre=’gi+=w’)
recurrent_inh[:,:]=’exp(-.5*(((layer23inh.x[i]-layer23exc.x[j])/.2)**2+((layer23inh.y[i]-layer23exc.y[j])/.2)**2))’
recurrent_inh.w=IPSC

# Stimulation
stimspeed = 1./stim_change_time # speed at which the bar of stimulation moves
direction = 0.0
stimzonecentre = ones(2)*barrelarraysize/2.
stimcentre,stimnorm = zeros(2),zeros(2)
stimradius = (11*stim_change_time*stimspeed+1)*.5
stimradius2 = stimradius**2

def new_direction():
global direction
direction = rand()*2*pi
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stimnorm[:] = (cos(direction), sin(direction))
stimcentre[:] = stimzonecentre-stimnorm*stimradius

@network_operation
def stimulation():

global direction, stimcentre
stimcentre += stimspeed*stimnorm*defaultclock.dt
if sum((stimcentre-stimzonecentre)**2)>stimradius2:

new_direction()
for (i, j), b in barrels4.iteritems():

whiskerpos = array([i,j], dtype=float)+0.5
isactive = abs(dot(whiskerpos-stimcentre, stimnorm))<.5
if barrels4active[i, j]!=isactive:

barrels4active[i, j] = isactive
b.rate = float(isactive)*tuning(layer4.selectivity[barrelindices[i, j]]-direction)

new_direction()

t2=time.time()
print "Construction time:",t2-t1,"s"

run(5*second,report=’text’)

figure()
# Preferred direction
# perhaps we need to add presynaptic and postsynaptic with 2D/3D access
selectivity=array([mean(array(feedforward.w[feedforward.synapses_post[i][:]])*exp(layer4.selectivity[feedforward.presynaptic[feedforward.synapses_post[i][:]]]*1j)) for i in range(len(layer23exc))])
selectivity=(arctan2(selectivity.imag,selectivity.real) % (2*pi))*180./pi

I=zeros((barrelarraysize*M23exc,barrelarraysize*M23exc))
ix=array(around(layer23exc.x*M23exc),dtype=int)
iy=array(around(layer23exc.y*M23exc),dtype=int)
I[iy,ix]=selectivity
imshow(I)
hsv()
colorbar()
for i in range(1,barrelarraysize+1):

plot([i*max(ix)/barrelarraysize,i*max(ix)/barrelarraysize],[0,max(iy)],’k’)
plot([0,max(ix)],[i*max(iy)/barrelarraysize,i*max(iy)/barrelarraysize],’k’)

figure()
hist(selectivity)

show()

Example: short_term_plasticity (synapses)

Example with short term plasticity.

from brian import *

tau_e = 3 * ms
taum = 10 * ms
A_SE = 250 * pA
Rm = 100 * Mohm
N = 10
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eqs = ’’’
dx/dt=rate : 1
rate : Hz
’’’

input = NeuronGroup(N, model=eqs, threshold=1., reset=0)
input.rate = linspace(5 * Hz, 30 * Hz, N)

eqs_neuron = ’’’
dv/dt=(Rm*i-v)/taum:volt
di/dt=-i/tau_e:amp
’’’
neuron = NeuronGroup(N, model=eqs_neuron)

taud=1*ms
tauf=100*ms
U=.1
#taud=100*ms
#tauf=10*ms
#U=.6
S=Synapses(input,neuron,

model=’’’x : 1
u : 1
w : 1’’’,

pre=’’’u=U+(u-U)*exp(-(t-lastupdate)/tauf)
x=1+(x-1)*exp(-(t-lastupdate)/taud)
i+=w*u*x
x*=(1-u)
u+=U*(1-u)’’’)

S[:,:]=’i==j’ # one to one connection
S.w=A_SE
# Initialization of STP variables
S.x = 1
S.u = U

trace = StateMonitor(neuron, ’v’, record=[0, N - 1])

run(1000 * ms)
subplot(211)
plot(trace.times / ms, trace[0] / mV)
title(’Vm’)
subplot(212)
plot(trace.times / ms, trace[N - 1] / mV)
title(’Vm’)
show()

Example: STDP1_bis (synapses)

Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001)

This simulation takes a long time!

Original time: 278 s with DelayConnection: 478 s New time: 416 s

from brian import *
from time import time

N = 1000
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taum = 10 * ms
taupre = 20 * ms
taupost = taupre
Ee = 0 * mV
vt = -54 * mV
vr = -60 * mV
El = -74 * mV
taue = 5 * ms
F = 15 * Hz
gmax = .01
dApre = .01
dApost = -dApre * taupre / taupost * 1.05
dApost *= gmax
dApre *= gmax

eqs_neurons = ’’’
dv/dt=(ge*(Ee-vr)+El-v)/taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1
’’’

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, model=eqs_neurons, threshold=vt, reset=vr)
S = Synapses(input, neurons,

model=’’’w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event-driven)’’’,

pre=’’’ge+=w
Apre+=dApre
w=clip(w+Apost,0,gmax)’’’,

post=’’’Apost+=dApost
w=clip(w+Apre,0,gmax)’’’)

neurons.v = vr
S[:,:]=True
S.w=’rand()*gmax’

rate = PopulationRateMonitor(neurons)

start_time = time()
run(100 * second, report=’text’)
print "Simulation time:", time() - start_time

subplot(311)
plot(rate.times / second, rate.smooth_rate(100 * ms))
subplot(312)
plot(S.w[:] / gmax, ’.’)
subplot(313)
hist(S.w[:] / gmax, 20)
show()

Example: weightmonitor (synapses)

Monitoring synaptic variables. STDP example.

from brian import *
from time import time

N = 1000
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taum = 10 * ms
tau_pre = 20 * ms
tau_post = tau_pre
Ee = 0 * mV
vt = -54 * mV
vr = -60 * mV
El = -74 * mV
taue = 5 * ms
F = 15 * Hz
gmax = .01
dA_pre = .01
dA_post = -dA_pre * tau_pre / tau_post * 1.05
dA_post *= gmax
dA_pre *= gmax

eqs_neurons = ’’’
dv/dt=(ge*(Ee-vr)+El-v)/taum : volt # the synaptic current is linearized
dge/dt=-ge/taue : 1
’’’

input = PoissonGroup(N, rates=F)
neurons = NeuronGroup(1, model=eqs_neurons, threshold=vt, reset=vr)
S = Synapses(input, neurons,

model=’’’w:1
A_pre:1
A_post:1’’’,
pre=’’’ge+=w
A_pre=A_pre*exp((lastupdate-t)/tau_pre)+dA_pre
A_post=A_post*exp((lastupdate-t)/tau_post)
w=clip(w+A_post,0,gmax)’’’,
post=’’’
A_pre=A_pre*exp((lastupdate-t)/tau_pre)
A_post=A_post*exp((lastupdate-t)/tau_post)+dA_post
w=clip(w+A_pre,0,gmax)’’’)

neurons.v = vr
S[:,:]=True
S.w=’rand()*gmax’

rate = PopulationRateMonitor(neurons)
M = StateMonitor(S,’w’,record=[0,1]) # monitors synapses number 0 and 1

start_time = time()
run(10 * second, report=’text’)
print "Simulation time:", time() - start_time

figure()
subplot(311)
plot(rate.times / second, rate.smooth_rate(100 * ms))
subplot(312)
plot(S.w[:] / gmax, ’.’)
subplot(313)
hist(S.w[:] / gmax, 20)
figure()
plot(M.times,M[0]/gmax)
plot(M.times,M[1]/gmax)
show()
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CHAPTER

FOUR

USER MANUAL

The SciPy, NumPy and PyLab packages are documented on the following web sites:

• http://www.scipy.org/Getting_Started

• http://www.scipy.org/Documentation

• http://docs.scipy.org/

• http://matplotlib.sourceforge.net/

Brian itself is documented in the following sections:

4.1 Units

4.1.1 Basics

Brian has a system for physical quantities with units built in, and most of the library functions require that variables
have the right units. This restriction is useful in catching hard to find errors based on using incorrect units, and ensures
that simulated models are physically meaningful. For example, running the following code causes an error:

>>> from brian import *
>>> c = Clock(t=0)

Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
c = Clock(t=0)

File "C:\Documents and Settings\goodman\Mes documents\Programming\Python simulator\Brian\units.py", line 1126, in new_f
raise DimensionMismatchError("Function " + f.__name__ + " variable " + k + " should have dimensions of " + str(au[k]), getDimensions(newkeyset[k]))

DimensionMismatchError: Function __init__ variable t should have dimensions of s, dimensions were (1)

You can see that Brian raises a DimensionMismatchError exception, because the Clock object expects t to
have units of time. The correct thing to write is:

>>> from brian import *
>>> c = Clock(t=0*second)

Similarly, attempting to do numerical operations with inconsistent units will raise an error:

>>> from brian import *
>>> 3*second+2*metre

Traceback (most recent call last):
File "<pyshell#38>", line 1, in <module>
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3*second+2*metre
File "C:\Documents and Settings\goodman\Mes documents\Programming\Python simulator\Brian\units.py", line 600, in __add__
if dim==self.dim:

DimensionMismatchError: Addition, dimensions were (s) (m)

4.1.2 Units defined in Brian

The following fundamental SI unit names are defined:

metre, meter (US spelling), kilogram, second, amp, kelvin, mole, candle

These derived SI unit names are also defined:

radian, steradian, hertz, newton, pascal, joule, watt, coulomb, volt, farad, ohm,
siemens, weber, tesla, henry, celsius, lumen, lux, becquerel, gray, sievert, katal

In addition, you can form scaled versions of these units with any of the standard SI prefixes:

Factor Name Symbol Factor Name Symbol
10^24 yotta Y 10^-24 yocto y
10^21 zetta Z 10^-21 zepto z
10^18 exa E 10^-21 zepto z
10^15 peta P 10^-15 femto f
10^12 tera T 10^-12 pico p
10^9 giga G 10^-9 nano n
10^6 mega M 10^-6 micro u (mu in SI)
10^3 kilo k 10^-3 milli m
10^2 hecto h 10^-2 centi c
10^1 deka da 10^-1 deci d

So for example, you could write fnewton for femto-newtons, Mwatt for megawatt, etc.

There are also units for 2nd and 3rd powers of each of the above units, for example metre3 = metre**3, watt2
= watt*watt, etc.

You can optionally use short names for some units derived from volts, amps, farads, siemens, seconds, hertz and me-
tres: mV, mA, uA, nA, pA, mF, uF, nF, mS, uS, ms, Hz, kHz, MHz, cm, cm2, cm3, mm,
mm2, mm3, um, um2, um3. Since these names are so short, there is a danger that they might clash with your
own variables names, so watch out for that.

4.1.3 Arrays and units

Versions of Brian before 1.0 had a system for allowing arrays to have units, this has been removed for the 1.0 release
because of stability problems - as new releases of NumPy, SciPy and PyLab came out it required changes to the units
code. Now all arrays used by Brian are standard NumPy arrays and have no units.

4.1.4 Checking units

Units are automatically checked when arithmetic operations are performed, and when a neuron group is initialised (the
consistency of the differential equations is checked). They can also be checked explictly when a user-defined function
is called by using the decorator @check_units, which can be used as follows:

@check_units(I=amp,R=ohm,wibble=metre,result=volt)
def getvoltage(I,R,**k):

return I*R

190 Chapter 4. User manual



Brian Documentation, Release 1.4.1

Remarks:

• not all arguments need to be checked

• keyword arguments may be checked

• the result can optionnally be checked

• no error is raised if the values are strings.

4.1.5 Disabling units

Unit checking can slow down the simulations. The units system can be disabled by inserting import
brian_no_units as the first line of the script, e.g.:

import brian_no_units
from brian import *
# etc

Internally, physical quantities are floats with an additional units information. The float value is the value in the SI
system. For example, float(mV) returns 0.001. After importing brian_no_units, all units are converted to
their float values. For example, mV is simply the number 0.001. This may also be a solution when using external
libraries which are not compatible with units (but see next section).

Unit checking can also be turned down locally when initializing a neuron group by passing the argument
check_units=False. In that case, no error is raised if the differential equations are not homogeneous.

A good practice is to develop the script with units on, then switch them off once the script runs correctly.

4.1.6 Converting quantities

In many situations, physical quantities need to be expressed with given units. For example, one might want to plot a
graph of the membrane potential in mV as a function of time in ms. The following code:

plot(t,V)

displays the trace with time in seconds and potential in volts. The simplest solution to have time in ms and potential
in mV is to use units operations:

plot(t/ms,V/mV)

Here, t/ms is a unitless array containing the values of t in ms. The same trick may be applied to use external functions
which do not work with units (convert the arguments to unitless quantities as above).

4.2 Models and neuron groups

4.2.1 Equations

Equations objects are initialised with a string as follows:

eqs=Equations(’’’
dx/dt=(y-x)/tau + a : volt # differential equation
y=2*x : volt # equation
z=x # alias
a : volt/second # parameter
’’’)
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It is possible to pass a string instead of an Equations object when initialising a neuron group. In that case, the string
is implicitly converted to an Equations object. There are 4 different types of equations:

• Differential equations: a differential equation, also defining the variable as a state variable in neuron groups.

• Equations: a non-differential equation, which is useful for defining complicated models. The variables are
also accessible for reading in neuron groups, which is useful for monitoring. The graph of dependencies of all
equations must have no cycle.

• Aliases: the two variables are equivalent. This is implemented as an equation, with write access in neuron
groups.

• Parameters: these are constant variables, but their values can differ from one neuron to the next. They are
implemented internally as differential equations with zero derivative.

Right hand sides must be valid Python expressions, possibly including comments and multiline characters (\).

The units of all variables except aliases must be specified. Note that in first line, the units volt are meant for x, not
dx/dt. The consistency of all units is checked with the method check_units(), which is automatically called when
initialising a neuron group (through the method prepare()).

When an Equations object is finalised (through the method prepare(), automatically called the NeuronGroup
initialiser), the names of variables defined by non-differential equations are replaced by their (string) values, so that
differential equations are self-consistent. In the process, names of external variables are also modified to avoid conflicts
(by adding a prefix).

4.2.2 Neuron groups

The key idea for efficient simulations is to update synchronously the state variables of all identical neuron models. A
neuron group is defined by the model equations, and optionally a threshold condition and a reset. For example for 100
neurons:

eqs=Equations(’dv/dt=-v/tau : volt’)
group=NeuronGroup(100,model=eqs,reset=0*mV,threshold=10*mV)

The model keyword also accepts strings (in that case it is converted to an Equations object), e.g.:

group=NeuronGroup(100,model=’dv/dt=-v/tau : volt’,reset=0*mV,threshold=10*mV)

The units of both the reset and threshold are checked for consistency with the equations. The code above defines a
group of 100 integrate-and-fire neurons with threshold 10 mV and reset 0 mV. The second line defines an object named
group which contains all the state variables, which can be accessed with the dot notation, i.e. group.v is a vector
with the values of variable v for all of the 100 neurons. It is an array with units as defined in the equations (here, volt).
By default, all state variables are initialised at value 0. It can be initialised by the user as in the following example:

group.v=linspace(0*mV,10*mV,100)

Here the values of v for all the neurons are evenly spaced between 0 mV and 10 mV (linspace is a NumPy
function). The method group.rest() may also be used to set the resting point of the equations, but convergence
is not always guaranteed.

Important options

• refractory: a refractory period (default 0 ms), to be used in combination with the reset value.

• implicit (default False): if True, then an implicit method is used. This is useful for Hodgkin-Huxley
equations, which are stiff.
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Subgroups

Subgroups can be created with the slice operator:

subgroup1=group[0:50]
subgroup2=group[50:100]

Then subgroup2.v[i] equals group.v[50+i]. An alternative equivalent method is the following:

subgroup1=group.subgroup(50)
subgroup2=group.subgroup(50)

The parent group keeps track of the allocated subgroups. But note that the two methods are mutually exclusive, e.g.
in the following example:

subgroup1=group[0:50]
subgroup2=group.subgroup(50)

both subgroups are actually identical.

Subgroups are useful when creating connections or monitoring the state variables or spikes. The best practice is to
define groups as large as possible, then divide them in subgroups if necessary. Indeed, the larger the groups are, the
faster the simulation runs. For example, for a network with a feedforward architecture, one should first define one
group holding all the neurons in the network, then define the layers as subgroups of this big group.

Details

For details, see the reference documentation for NeuronGroup.

4.2.3 Reset

More complex resets can be defined. The value of the reset keyword can be:

• a quantity (0*mV)

• a string

• a function

• a Reset object, which can be used for resetting a specific state variable or for resetting a state variable to the
value of another variable.

Reset as Python code

The simplest way to customise the reset is to define it as a Python statement, e.g.:

eqs=’’’
dv/dt=-v/tau : volt
dw/dt=-w/tau : volt
’’’
group=NeuronGroup(100,model=eqs,reset="v=0*mV;w+=3*mV",threshold=10*mV)

The string must be a valid Python statement (possibly a multiline string). It can contain variables from the neuron
group, units and any variable defined in the namespace (e.g. tau), as for equations. Be aware that if a variable in the
namespace has the same name as a neuron group variable, then it masks the neuron variable. The way it works is that
the code is evaluated with each neuron variable v replaced by v[spikes], where spikes is the array of indexes of
the neurons that just spiked.
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Functional reset

To define a specific reset, the generic method is define a function as follows:

def myreset(P,spikes):
P.v[spikes]=rand(len(spikes))*5*mV

group=NeuronGroup(100,model=eqs,reset=myreset,threshold=10*mV)

or faster:

def myreset(P,spikes):
P.v_[spikes]=rand(len(spikes))*5*mV

Every time step, the user-defined function is called with arguments P, the neuron group, and spikes, the list of
indexes of the neurons that just spiked. The function above resets the neurons that just spiked to a random value.

Resetting another variable

It is possible to specify the reset variable explicitly:

group=NeuronGroup(100,model=eqs,reset=Reset(0*mV,state=’w’),threshold=10*mV)

Here the variable w is reset.

Resetting to the value of another variable

The value of the reset can be given by another state variable:

group=NeuronGroup(100,model=eqs,reset=VariableReset(0*mV,state=’v’,resetvaluestate=’w’),threshold=10*mV)

Here the value of the variable w is used to reset the variable v.

4.2.4 Threshold

As for the reset, the threshold can be customised.

Threshold as Python expression

The simplest way to customise the threshold is to define it as a Python expression, e.g.:

eqs=’’’
dv/dt=-v/tau : volt
dw/dt=(v-w)/tau : volt
’’’
group=NeuronGroup(100,model=eqs,reset=0*mV,threshold="v>=w")

The string must be an expression which evaluates to a boolean. It can contain variables from the neuron group, units
and any variable defined in the namespace (e.g. tau), as for equations. Be aware that if a variable in the namespace has
the same name as a neuron group variable, then it masks the neuron variable. The way it works is that the expression
is evaluated with the neuron variables replaced by their vector values (values for all neurons), so that the expression
returns a boolean vector.
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Functional threshold

The generic method to define a custom threshold condition is to pass a function of the state variables which returns a
boolean (true if the threshold condition is met), for example:

eqs=’’’
dv/dt=-v/tau : volt
dw/dt=(v-w)/tau : volt
’’’
group=NeuronGroup(100,model=eqs,reset=0*mV,threshold=lambda v,w:v>=w)

Here we used an anonymous function (lambda keyword) but of course a named function can also be used. In this
example, spikes are generated when v is greater than w. Note that the arguments of the function must be the state
variables with the same order as in the Equations string.

Thresholding another variable

It is possible to specify the threshold variable explicitly:

group=NeuronGroup(100,model=eqs,reset=0*mV,threshold=Threshold(0*mV,state=’w’))

Here the variable w is checked.

Using another variable as the threshold value

The same model as in the functional threshold example can be defined as follows:

group=NeuronGroup(100,model=eqs,reset=0*mV,threshold=\
VariableThreshold(state=’v’,threshold_state=’w’))

Empirical threshold

For Hodgkin-Huxley models, one needs to determine the threshold empirically. Here the threshold should really be
understood rather as the onset of the spikes (used to propagate the spikes to the other neurons), since there is no explicit
reset. There is a Threshold subclass for this purpose:

group=NeuronGroup(100,model=eqs,threshold=EmpiricalThreshold(threshold=-20*mV,refractory=3*ms))

Spikes are triggered when the membrane potential reaches the value -20 mV, but only if it has not spiked in the last 3
ms (otherwise there would be spikes every time step during the action potential). The state keyword may be used
to specify the state variable which should be checked for the threshold condition.

Poisson threshold

It is possible to generate spikes with a given probability rather than when a threshold condition is met, by using the
class PoissonThreshold, as in the following example:

group=NeuronGroup(100,model=’x : Hz’,threshold=PoissonThreshold(state=’x’))
x=linspace(0*Hz,10*Hz,100)

Here spikes are generated as Poisson processes with rates given by the variable x (the state keyword is optional:
default = first variable defined). Note that x can change over time (inhomogeneous Poisson processes). The units of
variable x must be Hertz.
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4.3 Connections

4.3.1 Building connections

First, one must define which neuron groups are connected and which state variable receives the spikes. The following
instruction:

myconnection=Connection(group1,group2,’ge’)

defines a connection from group group1 to group2, acting on variable ge. When neurons from group group1
spike, the variable ge of the target neurons in group group2 are incremented. When the connection object is ini-
tialised, the list of connections is empty. It can be created in several ways. First, explicitly:

myconnection[2,5]=3*nS

This instruction connects neuron 2 from group1 to neuron 5 from group2 with synaptic weight 3 nS. Units should
match the units of the variable defined at initialisation time (ge).

The matrix of synaptic weights can be defined directly with the method Connection.connect():

W=rand(len(group1),len(group2))*nS
myconnection.connect(group1,group2,W)

Here a matrix with random elements is used to define the synaptic weights from group1 to group2. It is possible
to build the matrix by block by using subgroups, e.g.:

W=rand(20,30)*nS
myconnection.connect(group1[0:20],group2[10:40],W=W)

There are several handy functions available to set the synaptic weights: connect_full(), connect_random()
and connect_one_to_one(). The first one is used to set uniform weights for all pairs of neurons in the
(sub)groups:

myconnection.connect_full(group1[0:20],group2[10:40],weight=5*nS)

The second one is used to set uniform weights for random pairs of neurons in the (sub)groups:

myconnection.connect_random(group1[0:20],group2[10:40],sparseness=0.02,weight=5*nS)

Here the third argument (0.02) is the probability that a synaptic connection exists between two neurons. The number
of presynaptic neurons can be made constant by setting the keyword fixed=True (probability * number of neurons
in group1). Finally, the method connect_one_to_one() connects neuron i from the first group to neuron i
from the second group:

myconnection.connect_one_to_one(group1,group2,weight=3*nS)

Both groups must have the same number of neurons.

If you are connecting the whole groups, you can omit the first two arguments, e.g.:

myconnection.connect_full(weight=5*nS)

connects group1 to group2 with weights 5 nS.

Building connections with connectivity functions

There is a simple and efficient way to build heterogeneous connections, by passing functions instead of constants to
the methods connect_full() and connect_random(). The function must return the synaptic weight for a
given pair of neuron (i,j). For example:
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myconnection.connect_full(group1,group2,weight=lambda i,j:(1+cos(i-j))*2*nS)

where i (j) indexes neurons in group1 (group2). This is the same as doing by hand:

for i in range(len(group1)):
for j in range(len(group2)):
myconnection[i,j]=(1+cos(i-j))*2*nS

but it is much faster because the construction is vectorised, i.e., the function is called for every i with j being the entire
row of target indexes. Thus, the implementation is closer to:

for i in range(len(group1)):
myconnection[i,j]=(1+cos(i-arange(len(group2)))*2*nS

The method connect_random() also accepts functional arguments for the weights and connection probability.
For that method, it is possible to pass a function with no argument, as in the following example:

myconnection.connect_random(group1,group2,0.1,weight=lambda:rand()*nS)

Here each synaptic weight is random (between 0 and 1 nS). Alternatively, the connection probability can also be a
function, e.g.:

myconnection.connect_random(group1,group2,0.1,weight=1*nS,sparseness=lambda i,j:exp(-abs(i-j)*.1))

The weight or the connection probability may both be functions (with 0 or 2 arguments).

4.3.2 Delays

Transmission delays can be introduced with the keyword delay, passed at initialisation time. There are two types of
delays, homogeneous (all synapses have the same delay) and heterogeneous (all synapses can have different delays).
The former is more computationally efficient than the latter. An example of homogeneous delays:

myconnection=Connection(group1,group2,’ge’,delay=3*ms)

If you have limited heterogeneity, you can use several Connection objects, e.g.:

myconnection_fast=Connection(group1,group2,’ge’,delay=1*ms)
myconnection_slow=Connection(group1,group2,’ge’,delay=5*ms)

For a highly heterogeneous set of delays, initialise the connection with delay=True, set a maximum de-
lay with for example max_delay=5*ms and then use the delay keyword in the connect_random() and
connect_full() methods:

myconnection=Connection(group1,group2,’ge’,delay=True,max_delay=5*ms)
myconnection.connect_full(group1,group2,weight=3*nS,delay=(0*ms,5*ms))

The code above initialises the delays uniformly randomly between 0ms and 5ms. You can also set delay to be a
function of no variables, where it will be called once for each synapse, or of two variables i, j where it will be
called once for each row, as in the case of the weights in the section above.

Alternatively, you can set the delays as follows:

myconnection.delay[i,j] = 3*ms

See the reference documentation for Connection and DelayConnection for more details.
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4.3.3 Connection structure

The underlying data structure used to store the synaptic connections is by default a sparse matrix. If the connections
are dense, it is more efficient to use a dense matrix, which can be set at initialisation time:

myconnection=Connection(group1,group2,’ge’,structure=’dense’)

The sparse matrix structure is fixed during a run, new synapses cannot be added or deleted, but there is a dynamic sparse
matrix structure. It is less computationally efficient, but allows runtime adding and deleting of synaptic connections.
Use the structure=’dynamic’ keyword. For more details see the reference documentation for Connection.

4.3.4 Modulation

The synaptic weights can be modulated by a state variable of the presynaptic neurons with the keyword modulation:

myconnection=Connection(group1,group2,’ge’,modulation=’u’)

When a spike is produced by a presynaptic neuron (group1), the variable ge of each postsynaptic neuron (group2)
is incremented by the synaptic weight multiplied by the value of the variable u of the presynaptic neuron. This is
useful to implement short-term plasticity.

4.3.5 Direct connection

In some cases, it is useful to connect a group directly to another one, in a one-to-one fashion. The most efficient way
to implement it is with the class IdentityConnection:

myconnection=IdentityConnection(group1,group2,’ge’,weight=1*nS)

With this structure, the synaptic weights are homogeneous (it is not possible to define them independently). When
neuron i from group1 spikes, the variable ge of neuron i from group2 is increased by 1 nS. A typical application is
when defining inputs to a network.

4.3.6 Simple connections

If your connection just connects one group to another in a simple way, you can initialise the weights and delays at
the time you initialise the Connection object by using the weight, sparseness and delay keywords. For
example:

myconnection = Connection(group1, group2, ’ge’, weight=1*nS, sparseness=0.1,
delay=(0*ms, 5*ms), max_delay=5*ms)

This would be equivalent to:

myconnection = Connection(group1, group2, ’ge’, delay=True, max_delay=5*ms)
myconnection.connect_random(group1, group2, weight=1*nS, delay=(0*ms, 5*ms))

If the sparseness value is omitted or set to value 1, full connectivity is assumed, otherwise random connectivity.

NOTE: in this case the delay keyword used without the weight keyword has no effect.

4.4 Spike-timing-dependent plasticity

Synaptic weights can be modified by spiking activity. Weight modifications at a given synapse depend on the relative
timing between presynaptic and postsynaptic spikes. Down to the biophysical level, there is a number of synaptic

198 Chapter 4. User manual



Brian Documentation, Release 1.4.1

variables which are continuously evolving according to some differential equations, and those variables can be mod-
ified by presynaptic and postsynaptic spikes. In spike-timing-dependent plasticity (STDP) rules, the synaptic weight
changes at the times of presynaptic and postsynaptic spikes only, as a function of the other synaptic variables. In Brian,
an STDP rule can be specified by defining an STDP object, as in the following example:

eqs_stdp=’’’
dA_pre/dt=-A_pre/tau_pre : 1
dA_post/dt=-A_post/tau_post : 1
’’’
stdp=STDP(myconnection,eqs=eqs_stdp,pre=’A_pre+=dA_pre;w+=A_post’,

post=’A_post+=dA_post;w+=A_pre’,wmax=gmax)

The STDP object acts on the Connection object myconnection. Equations of the synaptic variables are given in
a string (argument eqs) as for defining neuron models. When a presynaptic (postsynaptic) spike is received, the code
pre (post) is executed, where the special identifier w stands for the synaptic weight (from the specified connection
matrix). Optionally, an upper limit can be specified for the synaptic weights (wmax).

The example above defines an exponential STDP rule with hard bounds and all-to-all pair interactions.

4.4.1 Current limitations

• The differential equations must be linear.

• Presynaptic and postsynaptic variables must not interact, that is, a variable cannot be modified by both presy-
naptic and postsynaptic spikes. However, synaptic weight modifications can depend on all variables.

• STDP currently works only with homogeneous delays, not heterogeneous ones.

Exponential STDP

In many applications, the STDP function is piecewise exponential. In that case, one can use the ExponentialSTDP
class:

stdp=ExponentialSTDP(synapses,taup,taum,Ap,Am,wmax=gmax,interactions=’all’,update=’additive’)

Here the synaptic weight modification function is:

f(s) = Ap*exp(-s/taup) if s >0
Am*exp(s/taum) if s <0

where s is the time of the postsynaptic spike minus the time of the presynaptic spike. The modification is generally
relative to the maximum weight wmax (see below). The interactions keyword determines how pairs of pre/post
synaptic spikes interact: all if contributions from all pairs are added, nearest for only nearest neighbour inter-
actions, nearest_pre if only the nearest presynaptic spike and all postsynaptic spikes are taken into account and
nearest_post for the symmetrical situation. The weight update can be additive, i.e., w=w+wmax*f(s), or
multiplicative: w=w+w*f(s) for depression (usually s<0) and w=w+(wmax-w)*f(s) for potentiation (usually
s>0). It can also be mixed: multiplicative for depression, additive for potentiation.

Delays

By default, transmission delays are assumed to be axonal, i.e., synapses are located on the soma: if the delay of the
connection C is d, then presynaptic spikes act after a delay d while postsynaptic spikes act immediately. This behaviour
can be overriden with the keywords delay_pre and delay_post, in both classes STDP and Exponential
STDP.
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4.5 Short-term plasticity

Brian implements the short-term plasticity model described in: Markram et al (1998). Differential signaling via the
same axon of neocortical pyramidal neurons, PNAS 95(9):5323-8. Synaptic dynamics is described by two variables x
and u, which follows the following differential equations:

dx/dt=(1-x)/taud (depression)
du/dt=(U-u)/tauf (facilitation)

where taud, tauf are time constants and U is a parameter in 0..1. Each a presynaptic spike triggers modifications of the
variables:

x->x*(1-u)
u->u+U*(1-u)

Note that the update order is important. Synaptic weights are modulated by the product u*x (in 0..1), which is taken
before updating the variables. This model describes both depression and facilitation.

To introduce short-term plasticity into an existing connection C, use the class STP:

mystp=STP(C,taud=100*ms,tauf=5*ms,U=.6)

4.6 Synapses

Starting from Brian 1.4, there is a new class, Synapses, in which everything synaptic can be defined. The
Synapses is similar to the Connection class, but it is more general and flexible. In particular, synaptic plas-
ticity can be defined in the same object.

4.6.1 Defining synaptic models

The basic syntax is as follows:

S=Synapses(P,Q,model=’w:1’,pre=’v+=w’)

This defines a set of synapses between NeuronGroup P and NeuronGroup Q. If the target group is not specified,
it is identical to the source group by default. The model keyword is similar as in NeuronGroup: it defines synaptic
variables and possibly their dynamics (with differential equations, as in NeuronGroup). Here, synaptic variable w
is created: there is one value for each synapse. The pre keyword defines what happens when a presynaptic spike
arrives at a synapse. In this case, variable w is added to variable v. Because v is not defined as a synaptic variable, it
is assumed by default that it is a postsynaptic variable, defined in the target NeuronGroup Q. Note that this does not
does create synapses (see next section), only the synaptic models.

The more general syntax is:

S=Synapses(P,Q,model=model_string,pre=pre_code,post=post_code)

Model syntax

The model follows exactly the same syntax as for NeuronGroup. There can be parameters (e.g. synaptic variable w
above), but there can also be static equations and differential equations, describing the dynamics of synaptic variables.
In all cases, synaptic variables are created, one value per synapse. Internally, these are stored as arrays. There are a
few specificities:
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• A variable with the _post suffix is looked up in the postsynaptic (target) neuron. That is, v_post means
variable v in the postsynaptic neuron.

• A variable with the _pre suffix is looked up in the presynaptic (source) neuron.

• A variable not defined as a synaptic variable is considered to be postsynaptic.

• A variable not defined as a synaptic variable and not defined in the postsynaptic neuron is considered external.

For the integration of differential equations, one can use the same keywords as for NeuronGroup.

Event-driven updates

By default, differential equations are integrated in a clock-driven fashion, as for a NeuronGroup. This is po-
tentially very time consuming, because all synapses are updated at every timestep. It is possible to ask Brian to
simulate differential equations in an event-driven fashion, for one-dimensional linear equations, using the keyword
(event-driven). A typical example is pre and postsynaptic traces in STDP:

model=’’’w:1
dApre/dt=-Apre/taupre : 1 (event-driven)
dApost/dt=-Apost/taupost : 1 (event-driven)’’’

Here, Brian updates the value of Apre for a given synapse only when this synapse receives a spike, whether it is
presynaptic or postsynaptic. More precisely, the variables are updated every time either the pre or post code is
called for the synapse, so that the values are always up to date when these codes are executed.

Automatic event-driven updates are only possible for one-dimensional linear equations. These equations must also be
independent of the other ones, that is, a differential equation that is not event-driven cannot depend on an event-driven
equation (since the values are not continuously updated). In other cases, the user can write event-driven code explicitly
in the update codes (see below).

Pre and post codes

The pre (post) code is executed at each synapse receiving a presynaptic spike. For example:

pre=’v+=w’

adds the value of synaptic variable w to postsynaptic variable v. As for the model equations, the _post (_pre)
suffix indicates a postsynaptic (presynaptic) variable, and variables not found in the synaptic variables are considered
postsynaptic by default. Internally, the execution of the code is vectorized (simultaneously executed) for all synapses
receiving presynaptic spikes during the current timestep. Therefore, the code should be understood as acting on arrays
rather than single values. Any sort of code can be executed. For example, the following code defines stochastic
synapses, with a synaptic weight w and transmission probability p:

S=Synapses(input,neurons,model="""w : 1
p : 1""",

pre="v+=w*(rand()<p)")

The code means that w is added to v with probability p (note that, internally, rand() is transformed to a instruction
that outputs an array of random numbers). The code may also include multiple lines.

As mentioned above, it is possible to write event-driven update code for the synaptic variables. For this, two special
variables are provided: t is the current time when the code is executed, and lastupdate is the last time when the
synapse was updated (either through pre or post code). An example is short-term plasticity (in fact this could be
done automatically with the use of the (event-driven) keyword mentioned above):
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S=Synapses(input,neuron,
model=’’’x : 1

u : 1
w : 1’’’,

pre=’’’u=U+(u-U)*exp(-(t-lastupdate)/tauf)
x=1+(x-1)*exp(-(t-lastupdate)/taud)
i+=w*u*x
x*=(1-u)
u+=U*(1-u)’’’)

Lumped variables

In many cases, the postsynaptic neuron has a variable that represents a sum of variables over all its synapses. This is
called a “lumped variable”. An example is nonlinear synapses (e.g. NMDA):

neurons = NeuronGroup(1, model="""dv/dt=(gtot-v)/(10*ms) : 1
gtot : 1""")

S=Synapses(input,neurons,
model=’’’dg/dt=-a*g+b*x*(1-g) : 1

dx/dt=-c*x : 1
w : 1 # synaptic weight

’’’,
pre=’x+=w’)

neurons.gtot=S.g

Here, each synapse has a conductance g with nonlinear dynamics. The neuron’s total conductance is gtot. The
link between the two is specified by the last statement. What happens during the simulation is that at each time step,
presynaptic conductances are summed for each neuron and the result is copied to the variable gtot. Another example
is gap junctions:

neurons = NeuronGroup(N, model=’’’dv/dt=(v0-v+Igap)/tau : 1
Igap : 1’’’)

S=Synapses(neurons,model=’’’w:1 # gap junction conductance
Igap=w*(v_pre-v_post): 1’’’)

neurons.Igap=S.Igap

Here, Igap is the total gap junction current received by the postsynaptic neuron.

4.6.2 Creating synapses

Creating a Synapses instance does not create synapses, it only specifies their dynamics. The following command
creates a synapse between neuron i in the source group and j in the target group:

S[i,j]=True

It is possible to create several synapses for a given pair of neurons:

S[i,j]=3

This is useful for example if one wants to have multiple synapses with different delays. Multiple synapses can be
created in a single statement:

S[:,:]=True
S[:,1]=True
S[Pe,Pi]=True
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The first statement creates synapses between all pairs of neurons. The second statement creates synapses between all
neurons in the source group and neuron 1 in the target group. The third statement connects all pairs of neurons in the
subgroups Pe and Pi.

One can also create synapses using code:

S[:,:]=’i==j’
S[:,:]=’j==((i+1)%N)’

The code is a boolean statement that should return True when a synapse must be created, where i is the presynaptic
neuron index and j is the postsynaptic neuron index (special variables). Here the first statement creates one-to-one
connections, the second statement creates connections with a ring structure (N is the number of neurons, assumed to
defined elsewhere by the user). This way of creating synapses is generally much faster than using loops, because it is
internally vectorised.

Two high level construction methods are implemented:

S.connect_random(group1,group2,sparseness=0.1)
S.connect_one_to_one(group1,group2)

The first one randomly connects pairs of neurons with probability given by the sparseness argument. The second
one is equivalent to the instruction S[group1,group2]=’i==j’. The group1 and group2 arguments are
subgroups of the source and target groups.

4.6.3 Accessing synaptic variables

Synaptic variables can be accessed in a similar way as NeuronGroup variables. They can indexed with two indexes,
corresponding to the indexes of pre and postsynaptic neurons, and optionally with a third index in the case of multiple
synapses. Here are a few examples, which follows essentially the same syntax as for creating synapses:

S.w[2,5]=1*nS
S.w[1,:]=2*nS
S.w=1*nS # all synapses assigned
w0=S.w[2,3,1] # second synapse for connection 2->3
S.w[2,3]=(1*nS,2*nS)
S.w[group1,group2]="(1+cos(i-j))*2*nS"
S.w[:,:]=’rand()*nS’

4.6.4 Delays

There is a special synaptic variable that is automatically created: delay. It is the propagation delay from the presy-
naptic neuron to the synapse, i.e., the presynaptic delay. An alias is delay_pre. When there is a postsynaptic code
(keyword post), the variable delay_post is created. These can be accessed and modified in the same way as other
synaptic variables.

If delays can change during the simulation, one should specify the maximum allowed delay with the keyword
max_delay:

synapses = Synapses(P,Q,model=’w:1’,pre=’v+=w’,max_delay=1*ms)

Otherwise, this maximum delay is automatically calculated the first time the model is run.

4.6.5 Multiple pathways

It is possible to have multiple pathways with different update codes from the same presynaptic neuron group. This
may be interesting in cases when different operations must be applied at different times for the same presynaptic spike.
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To do this, simply specify a tuple or list of pre codes:

pre=(’ge+=w’,
’’’w=clip(w+Apost,0,inf)

Apre+=dApre’’’)

This creates two sets of delay variables, one for each pathway. They can be accessed by first indexing with the pathway
number. The following statement, for example, sets the delay of the synapse between the first neurons of the source
and target groups, in the second pathway:

S.delay[1][0,0]=3*ms

4.6.6 Monitoring synaptic variables

A StateMonitor object can be used to monitor synaptic variables. For example, the following statement creates a
monitor for variable w for the synapses 0 and 1:

M = StateMonitor(S,’w’,record=[0,1])

Note that these are synapse indexes, not neuron indexes. These can be obtained with the synapse_index()
method:

s=S.synapse_index((i,j))

where i and j may be integers, arrays or slices. A third index can also be given.

The recorded traces can then be accessed in the usual way, for example:

plot(M.times,M[0])

4.7 Recording

The activity of the network can be recorded by defining monitors.

4.7.1 Recording spikes

To record the spikes from a given group, define a SpikeMonitor object:

M=SpikeMonitor(group)

At the end of the simulation, the spike times are stored in the variable spikes as a list of pairs (i,t) where neuron i
fired at time t. For example, the following code extracts the list of spike times for neuron 3:

spikes3=[t for i,t in M.spikes if i==3]

but this operation can be done directly as follows:

spikes3=M[3]

The total number of spikes is M.nspikes.
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Custom monitoring

To process the spikes in a specific way, one can pass a function at initialisation of the SpikeMonitor object:

def f(spikes):
print spikes

M=SpikeMonitor(group,function=f)

The function f is called every time step with the argument spikes being the list of indexes of neurons that just
spiked.

4.7.2 Recording state variables

State variables can be recorded continuously by defining a StateMonitor object, as follows:

M=StateMonitor(group,’v’)

Here the state variables v of the defined group are monitored. By default, only the statistics are recorded. The list of
time averages for all neurons is M.mean; the standard deviations are stored in M.std and the variances in M.var.
Note that these are averages over time, not over the neurons.

To record the values of the state variables over the whole simulation, use the keyword record:

M1=StateMonitor(group,’v’,record=True)
M2=StateMonitor(group,’v’,record=[3,5,9])

The first monitor records the value of v for all neurons while the second one records v for neurons 3, 5 and 9 only.
The list of times is stored in M1.times and the lists of values are stored in M1[i], where i the index of the neuron.
Means and variances are no longer recorded if you record traces.

By default, the values of the state variables are recorded every timestep, but one may record every n timesteps by
setting the keyword timestep:

M=StateMonitor(group,’v’,record=True,timestep=n)

Recording spike triggered state values

You can record the value of a state variable at each spike using StateSpikeMonitor:

M = StateSpikeMonitor(group, ’V’)

The spikes attribute of M consists of a series of tuples (i,t,V) where V is the value at the time of the spike.

Recording multiple state variables

You can either use multiple StateMonitor objects or use the MultiStateMonitor object:

M = MultiStateMonitor(group, record=True)
...
run(...)
...
plot(M[’V’].times, M[’V’][0])
figure()
for name, m in M.iteritems():

plot(m.times, m[0], label=name)
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legend()
show()

Recording only recent values

You can use the RecentStateMonitor object, e.g.:

G = NeuronGroup(1, ’dV/dt = xi/(10*ms)**0.5 : 1’)
MR = RecentStateMonitor(G, ’V’, duration=5*ms)
run(7*ms)
MR.plot()
show()

4.7.3 Counting spikes

To count the total number of spikes produced by a group, use a PopulationSpikeCounter object:

M=PopulationSpikeCounter(group)

Then the number of spikes after the simulation is M.nspikes. If you need to count the spikes separately for each
neuron, use a SpikeCounter object:

M=SpikeCounter(group)

Then M[i] is the number of spikes produced by neuron i.

4.7.4 Counting coincidences

To count the number of coincident spikes between the neurons of a group and given target spike trains, use a
CoincidenceCounter object:

C=CoincidenceCounter(source=group, data=data, delta=delta)

data is a list of pairs (neuron_index, spike time), and delta is the time window in second. To get the number of
coincidences for each neuron of the group, use

coincidences = C.coincidences

The gamma precision factor can be obtained with

gamma = C.gamma

4.7.5 Recording population rates

The population rate can be monitored with a PopulationRateMonitor object:

M=PopulationRateMonitor(group)

After the simulation, M.times contains the list of recording times and M.rate is the list of rate values (where the
rate is meant in the spatial sense: average rate over the whole group at some given time). The bin size is set with the
bin keyword (in seconds):

M=PopulationRateMonitor(group,bin=1*ms)
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Here the averages are calculated over 1 ms time windows. Alternatively, one can use the smooth_rate() method
to smooth the rates:

rates=M.smooth_rate(width=1*ms,filter=’gaussian’)

The rates are convolved with a linear filter, which is either a Gaussian function (gaussian, default) or a box function
(‘flat’).

4.7.6 Van Rossum Metric

The Van Rossum metric can be computed by monitoring a group with a VanRossumMetric object:

M = VanRossumMetric(G, tau=4*ms)
...
imshow(M.distance)

4.8 Inputs

Some specific types of neuron groups are available to provide inputs to a network.

4.8.1 Poisson inputs

Poisson spike trains can be generated as follows:

group=PoissonGroup(100,rates=10*Hz)

Here 100 neurons are defined, which emit spikes independently according to Poisson processes with rates 10 Hz. To
have different rates across the group, initialise with an array of rates:

group=PoissonGroup(100,rates=linspace(0*Hz,10*Hz,100))

Inhomogeneous Poisson processes can be defined by passing a function of time that returns the rates:

group=PoissonGroup(100,rates=lambda t:(1+cos(t))*10*Hz)

or:

r0=linspace(0*Hz,10*Hz,100)
group=PoissonGroup(100,rates=lambda t:(1+cos(t))*r0)

There is another class for Poisson inputs: PoissonInput, which updates the state variable of a NeuronGroup
dynamically without storing in memory all the Poisson events. It can be used like this:

input = PoissonInput(group, N=N, rate=rate, weight=w, state=’I’)

In this case, the variable I represents the sum of N independent Poisson spike inputs with rate rate, where each
individual synaptic event increases the variable I by w. Several PoissonInput objects can be created for a given
NeuronGroup, in which case all the independent inputs are linearly superimposed.

Other features of the PoissonInput class include the following (see the reference):

• record the individual Poisson events (record=True keyword),

• having identical Poisson events for all neurons, instead of having independent copies for every neuron
(freeze=True keyword)
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• copying every Poisson input a specified number of times (copies=p keyword). This is equivalent of
specifying weight=p*w, except that those copies can be randomly shifted (jitter keyword), or can
be unreliable to model synapse unreliability (reliability keyword). The latter case corresponds to a
Binomial synaptic weight.

4.8.2 Correlated inputs

Generation of correlated spike trains is partially implemented, using algorithms from the the following paper: Brette,
R. (2009) Generation of correlated spike trains, Neural Computation 21(1): 188-215. Currently, only the method with
Cox processes (or doubly stochastic processes, first method in the paper) is fully implemented.

Doubly stochastic processes

To generate correlated spike trains with identical rates and homogeneous exponential correlations, use the class
HomogeneousCorrelatedSpikeTrains:

group=HomogeneousCorrelatedSpikeTrains(100,r=10*Hz,c=0.1,tauc=10*ms)

where r is the rate, c is the total correlation strength and tauc is the correlation time constant. The cross-covariance
functions are (c*r/tauc)*exp(-|s|/tauc). To generate correlated spike trains with arbitrary rates r(i) and cross-covariance
functions c(i,j)*exp(-|s|/tauc), use the class CorrelatedSpikeTrains:

group=CorrelatedSpikeTrains(rates,C,tauc)

where rates is the vector of rates r(i), C is the correlation matrix (which must be symmetrical) and tauc is the
correlation time constant. Note that distortions are introduced with strong correlations and short correlation time
constants. For short time constants, the mixture method is more appropriate (see the paper above). The two classes
HomogeneousCorrelatedSpikeTrains and CorrelatedSpikeTrains define neuron groups, which can
be directly used with Connection objects.

Mixture method

The mixture method to generate correlated spike trains is only partially implemented and the interface may change in
future releases. Currently, one can use the function mixture_process() to generate spike trains:

spiketrains=mixture_process(nu,P,tauc,t)

where nu is the vector of rates of the source spike trains, P is the mixture matrix (entries between 0 and 1), tauc is
the correlation time constant, t is the duration. It returns a list of (neuron_number,spike_time), which can be passed
to SpikeGeneratorGroup. This method is appropriate for short time constants and is explained in the paper
mentioned above.

4.8.3 Input spike trains

A set of spike trains can be explicitly defined as list of pairs (i,t) (meaning neuron i fires at time t), which used to
initialise a SpikeGeneratorGroup:

spiketimes=[(0,1*ms), (1,2*ms)]
input=SpikeGeneratorGroup(5,spiketimes)

The neuron 0 fires at time 1 ms and neuron 1 fires at time 2 ms (there are 5 neurons, but 3 of them never spike). One
may also pass a generator instead of a list (in that case the pairs should be ordered in time).
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Gaussian spike packets

There is a subclass of SpikeGeneratorGroup for generating spikes with a Gaussian distribution:

input=PulsePacket(t=10*ms,n=10,sigma=3*ms)

Here 10 spikes are produced, with spike times distributed according a Gaussian distribution with mean 10 ms and
standard deviation 3 ms.

4.8.4 Direct input

Inputs may also be defined by accessing directly the state variables of a neuron group. The standard way to do this is
to insert parameters in the equations:

eqs = ’’’
dv/dt = (I-v)/tau : volt
I : volt
’’’
group = NeuronGroup(100, model=eqs, reset=0*mV, threshold=15*mV)
group.I = linspace(0*mV, 20*mV, 100)

Here the value of the parameter I for each neuron is provided at initialisation time (evenly distributed between 0 mV
and 20 mV).

Time varying inputs

It is possible to change the value of I every timestep by using a user-defined operation (see next section). Alternatively,
you can use a TimedArray to specify the values the variable will have at each time interval, for example:

eqs = ’’’
dv/dt = (I-v)/tau : volt
I : volt
’’’
group = NeuronGroup(1, model=eqs, reset=0*mV, threshold=15*mV)
group.I = TimedArray(linspace(0*mV, 20*mV, 100), dt=10*ms)

Here I will have value 0*mV for t between 0 and 10*ms‘, ‘‘0.2*mV between 10*ms and 20*ms, and so on. A
more intuitive syntax is:

I = TimedArray(linspace(0*mV, 20*mV, 100), dt=10*ms)
eqs = ’’’
dv/dt = (I(t) * volt - v)/tau : volt
’’’
group = NeuronGroup(1, model=eqs, reset=0*mV, threshold=15*mV)

Note however that the more efficient exact linear differential equations solver won’t be used in this case because I(t)
could be any function, so the previous mechanism is often preferable. Additionally, be aware that the call to I(t)
does return a value without units (as units cannot be stored in arrays), therefore you have to explicitly multiply it with
the respective unit.

Linked variables

Another option is to link the variable of one group to the variables of another group using linked_var(), for
example:
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G = NeuronGroup(...)
H = NeuronGroup(...)
G.V = linked_var(H, ’W’)

In this scenario, the variable V in group G will always be updated with the values from variable W in group H. The
groups G and H must be the same size (although subgroups can be used if they are not the same size).

4.9 User-defined operations

In addition to neuron models, the user can provide functions that are to be called every timestep during the simulation,
using the decorator network_operation():

@network_operation
def myoperation():

do_something_every_timestep()

The operation may be called at regular intervals by defining a clock:

myclock=Clock(dt=1*ms)

@network_operation(myclock)
def myoperation():

do_something_every_ms()

4.10 Analysis and plotting

Most plotting should be done with the PyLab commands, all of which are loaded when you import Brian. See:

http://matplotlib.sourceforge.net/matplotlib.pylab.html

for help on PyLab. The scientific library Scipy is also automatically imported by the instruction from brian
import *.

The most useful plotting instruction is the Pylab function plot. A typical use with Brian is:

plot(t/ms,vm/mV)

where t is a vector of times with units ms and vm is a vector of voltage values with units mV. To display the figures on
the screen, the function show() must be called once (this should be the last line of your script), except when using
IPython with the Pylab mode (ipython -pylab).

Brian currently defines just two plotting functions of its own, raster_plot() and hist_plot(). In addition,
the StateMonitor object has a plot() method.

4.10.1 Raster plots

Spike trains recorded by a SpikeMonitor can be displayed as raster plots:

S=SpikeMonitor(group)
...
raster_plot(S)

Usual options of the plot command can also be passed to raster_plot(). One may also pass several spike
monitors as arguments.
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4.10.2 State variable plots

State values recorded by a StateMonitor can also be plotted as follows:

M = StateMonitor(group, ’V’, record=[0,1,2])
...
M.plot()

4.10.3 Realtime plotting

Both raster_plot() and StateMonitor.plot() have real-time versions which update as the simulation
runs, for example:

G = NeuronGroup(...)
spikemon = SpikeMonitor(G)
statemon = StateMonitor(G, ’V’, record=range(5))
ion()
subplot(211)
raster_plot(spikemon, refresh=10*ms, showlast=200*ms)
subplot(212)
statemon.plot(refresh=10*ms, showlast=200*ms)
run(1*second)
ioff()
show()

The ion() and ioff() command activate and deactivate Pylab’s interactive plotting mode. The refresh param-
eter specifies how often (in simulation time) to refresh the plot - smaller values will slow down the simulation. The
showlast option only plots the most recent values.

With some IDEs, you may need to do something like the following at the beginning of your script to make interactive
mode work:

import matplotlib
matplotlib.use(’WXAgg’)

This is because the default graphical backend can sometimes interact badly with the IDE. Other options to try are
GTKAgg, QTAgg, TkAgg.

4.10.4 Statistics

Here are a few functions to analyse first and second order statistical properties of spike trains, defined as ordered lists
of spike times:

• Firing rate: firing_rate(spikes) where spikes is a spike train (list of spike times).

• Coefficient of variation: CV(spikes).

• Cross-correlogram: correlogram(T1,T2,width=20*ms,bin=1*ms,T=None) returns the cross-
correlogram of spike trains T1 and T2 with lag in [-width,width] and given bin size. T is the total duration
(optional) and should be greater than the duration of T1 and T2. The result the rate of coincidences in each bin,
returned as an array.

• Autocorrelogram: autocorrelogram(T0,width=20*ms,bin=1*ms,T=None) is the same as
correlogram(T0,T0,width=20*ms,bin=1*ms,T=None).

• Cross-correlation function: CCF(T1,T2,width=20*ms,bin=1*ms,T=None) returns the cross-
correlation function of T1 and T2, which is the same as the cross-correlogram divided by the bin size (which
makes the result independent of the bin size).
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• Autocorrelation function: ACF(T0,width=20*ms,bin=1*ms,T=None), same as
CCF(T0,T0,width=20*ms,bin=1*ms,T=None).

• Cross-covariance function: CCVF(T1,T2,width=20*ms,bin=1*ms,T=None) is the cross-correlation
function of T1 and T2 minus for the cross-correlation of independent spike trains with the same rates (product
of rates).

• Auto-covariance function: ACVF(T0,width=20*ms,bin=1*ms,T=None) is the same as
CCVF(T0,T0,width=20*ms,bin=1*ms,T=None).

• Total correlation coefficient: total_correlation(T1,T2,width=20*ms,T=None) is the integral of
the cross-covariance function divided by the rate of T1, typically (but not always) between 0 and 1.

• Vector strength: vector_strength(spikes,period) returns the vector strength of the given spike train
with respect to the period. If each spike time with phase phi is represented by a vector with angle phi, then
the vector strength is the length of the average vector. It equals 1 for spikes with constant phase and 0 for
homogeneous phase distributions.

• Gamma precision factor: gamma_factor(source, target, delta) returns the gamma precision fac-
tor between source and target trains, with precision delta.

These functions return NaN (not a number) when a spike train is empty.

4.11 Realtime control

A running Brian simulation can be controlled, for example using an IPython shell. This can work either on a single
computer, or over IP from another computer. The process running the simulation calls something like:

server = RemoteControlServer()

and the IPython shell calls:

client = RemoteControlClient()

The shell can now execute and evaluate in the server process via:

spikes = client.evaluate(’M.spikes’)
i, t = zip(*spikes)
plot(t, i, ’.’)
client.stop()

Parameters can be changed as the simulation runs. For more details, see the reference documentation for
RemoteControlServer and RemoteControlClient.

4.12 Clocks

Brian is a clock-based simulator: operations are done synchronously at each tick of a clock.

Many Brian objects store a clock object, passed in the initialiser with the optional keyword clock. For example, to
simulate a neuron group with time step dt=1 ms:

myclock=Clock(dt=1*ms)
group=NeuronGroup(100,model=’dx/dt=1*mV/ms : volt’,clock=myclock)

If no clock is specified, the program uses the global default clock. When Brian is initially imported, this is the object
defaultclock, and it has a default time step of 0.1 ms. In a simple script, you can override this by writing (for
example):
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defaultclock.dt = 1*ms

You may wish to use multiple clocks in your program. In this case, for each object which requires one, you have
to pass a copy of its Clock object. The network run function automatically handles objects with different clocks,
updating them all at the appropriate time according to their time steps (value of dt).

Multiple clocks can be useful, for example, for defining a simulation that runs with a very small dt, but with some
computationally expensive operation running at a lower frequency. In the following example, the model is simulated
with dt=0.01 ms and the variable x is recorded every ms:

simulation_clock=Clock(dt=0.01*ms)
record_clock=Clock(dt=1*ms)
group=NeuronGroup(100,model=’dx/dt=-x/tau : volt’,clock=simulation_clock)
M=StateMonitor(group,’x’,record=’True’,clock=record_clock)

The current time of a clock is stored in the attribute t (simulation_clock.t) and the timestep is stored in the
attribute dt.

When using multiple clocks, it can be important to specify the order in which they evaluated, which you can using the
order keyword of the Clock object, e.g.:

clock_first = Clock(dt=1*ms, order=0)
clock_second = Clock(dt=5*ms, order=1)

Every 5ms, these two clocks will coincide, and the order attribute means that clock_firstwill always be evaluated
before clock_second.

4.12.1 Other clocks

The default clock uses an underlying integer representation. This behaviour was changed in Brian 1.3 from earlier ver-
sions which used a float representation. To recover the earlier behaviour if it is important, you can use FloatClock
or NaiveClock.

You may want to have events that happen at regular times, but still want to use the default clock for all other objects,
in which case you can use the EventClock for a network_operation() and it will not create any clock
ambiguities, e.g.:

from brian import *

...

G = NeuronGroup(N, eqs, ...)

...

@network_operation(clock=EventClock(dt=1*second))
def do_something():

...

4.13 Simulation control

4.13.1 The update schedule

When a simulation is run, the operations are done in the following order by default:
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1. Update every NeuronGroup, this typically performs an integration time step for the differential equations
defining the neuron model.

2. Check the threshold condition and propagate the spikes to the target neurons.

3. Update every Synapses, this may include updating the state of targeted NeuronGroup objects

4. Reset all neurons that spiked.

5. Call all user-defined operations and state monitors.

The user-defined operations and state monitors can be placed at other places in this schedule, by using the key-
word when. The values can be start, before_groups, after_groups, middle, before_connections,
after_connections, before_resets, after_resets or end (default: end). For example, to call a func-
tion f at the beginning of every timestep:

@network_operation(when=’start’)
def f():
do_something()

or to record the value of a state variable just before the resets:

M=StateMonitor(group,’x’,record=True,when=’before_resets’)

4.13.2 Basic simulation control

The simulation is run simply as follows:

run(1000*ms)

where 1000 ms is the duration of the run. It can be stopped during the simulation with the instruction stop(), and the
network can be reinitialised with the instruction reinit(). The run() function also has some options for reporting
the progress of the simulation as it runs, for example this will print out the elapsed time, percentage of the simulation
this is complete, and an estimate of the remaining time every 10s:

run(100*second, report=’text’)

When the run() function is called, Brian looks for all relevant objects in the namespace (groups, connections,
monitors, user operations), and runs them. In complex scripts, the user might want to run only selected objects. In
that case, there are two options. The first is to create a Network object (see next section). The second is to use the
forget() function on objects you want to exclude from being used. These can then be later added back using the
recall() function.

Users of ipython may also want to make use of the clear() function which removes all Brian objects and deletes
their data. This is useful because ipython keeps persistent references to these objects which stops memory from
being freed.

4.13.3 The Network class

A Network object holds a collection of objets that can be run, i.e., objects with class NeuronGroup,
Connection, SpikeMonitor, StateMonitor (or subclasses) or any user-defined operation with the decorator
network_operation(). Thoses objects can then be simulated. Example:

G = NeuronGroup(...)
C = Connection(...)
net = Network(G,C)
net.run(1*second)

You can also pass lists of objects. The simulation can be controlled with the methods stop and reinit.
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4.13.4 The MagicNetwork object

When run(), reinit() and stop() are called, they act on the “magic network” (the network consisting of all
relevant objects such as groups, connections, monitors and user operations). This “magic network” can be explicitly
constructed using the MagicNetwork object:

G = NeuronGroup(...)
C = Connection(...)
net = MagicNetwork()
net.run(1*second)

4.14 More on equations

The Equations class is a central part of Brian, since models are generally specified with an Equations object.
Here we explain advanced aspects of this class.

4.14.1 External variables

Equations may contain external variables. When an Equations object is initialised, a dictionary is built with the
values of all external variables. These values are taken from the namespace where the Equations object was defined.
It is possible to go one or several levels up in the namespaces by specifying the keyword level (default=0). The
value of these parameters can in general be changed during the simulation and the modifications are taken into account,
except in two situations: when the equations are frozen (see below) or when the integration is exact (linear equations).
In those cases, the values of the parameters are the ones at initialisation time.

Alternatively, the string defining the equations can be evaluated within a given namespace by providing keywords at
initialisation time, e.g.:

eqs=Equations(’dx/dt=-x/tau : volt’,tau=10*ms)

In that case, the values of all external variables are taken from the specified dictionary (given by the keyword argu-
ments), even if variables with the same name exist in the namespace where the string was defined. The two methods for
passing the values of external variables are mutually exclusive, that is, either all external variables are explicitly spec-
ified with keywords (if not, they are left unspecified even if there are variables with the same names in the namespace
where the string was defined), or all values are taken from the calling namespace.

More can be done with keyword arguments. If the value is a string, then the name of the variable is replaced, e.g.:

eqs=Equations(’dx/dt=-x/tau : volt’,tau=10*ms,x=’Vm’)

changes the variable name x to Vm. This is useful for writing functions which return equations where the variable
name is provided by the user.

Finally, if the value is None then the name of the variable is replaced by a unique name, e.g.:

eqs=Equations(’dx/dt=-x/tau : volt’,tau=10*ms,x=None)

This is useful to avoid conflicts in the names of hidden variables.

Issues

• There can be problems if a variable with the same name as the variable of a differential equation exists in the
namespace where the Equations object was defined.
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4.14.2 Combining equations

Equations can be combined using the sum operator. For example:

eqs=Equations(’dx/dt=(y-x)/tau : volt’)
eqs+=Equations(’dy/dt=-y/tau: volt’)

Note that some variables may be undefined when defining the first equation. No error is raised when variables are
undefined and absent from the calling namespace. When two Equations objects are added, the consistency is
checked. For example it is not possible to add two Equations objects which define the same variable.

4.14.3 Which variable is the membrane potential?

Several objects, such as Threshold or Reset objects can be initialised without specifying which variable is
the membrane potential, in which case it is assumed that it is the first variable. Internally, the variables of
an Equations object are reorderered so that the first one is most likely to be the membrane potential (using
Equations.get_Vm()). The first variable is, with decreasing priority :

• v

• V

• vm

• Vm

• the first defined variable.

4.14.4 Numerical integration

The currently available integration methods are:

• Exact integration when the equations are linear.

• Euler integration (explicit, first order).

• Runge-Kutta integration (explicit, second order).

• Exponential Euler integration (implicit, first order).

The method is selected when a NeuronGroup is initialized. If the equations are linear, exact integration is au-
tomatically selected. Otherwise, Euler integration is selected by default, unless the keyword implicit=True is
passed, which selects the exponential Euler method. A second-order method can be selected using the keyword
order=2 (explicit Runge-Kutta method, midpoint estimation). It is possible to override this behaviour with the
method keyword when initialising a NeuronGroup. Possible values are linear, nonlinear, Euler, RK,
exponential_Euler.

Exact integration

If the differential equations are linear, then the update phase X(t)->X(t+dt) can be calculated exactly with a matrix
product. First, the equations are examined to determine whether they are linear with the method islinear() and
the function is_affine() (this is currently done using dynamic typing). Second, the matrix M and the vector B
such that dX/dt=M(X-B) are calculated with the function get_linear_equations() 1. Third, the matrix A such
that X(t+dt)=A*(X(t)-B)+B is calculated at initialisation of a specific state updater object, LinearStateUpdater,
as A=expm(M*dt), where expm is the matrix exponential.

1 Note that this approach raises an issue when dX/dt=B. We currently (temporarily) solve this problem by adding a small diagonal matrix to M
to make it invertible.
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Important remark: since the update matrix and vector are precalculated, the values of all external variables in the
equations are frozen at initialisation. If external variables are modified after initialisation, those modifications are not
taken into account during the simulation.

Inexact exact integration: If the equation cannot be put into the form dX/dt=M(X-B), for example if the equation is
dX/dt=MX+A where M is not invertible, then the equations are not integrated exactly, but using a system equivalent
to Euler integration but with dt 100 times smaller than specified. Updates are of the form X(t+dt)=A*X(t)+C where
the matrix A and vector C are computed by applying Euler integration 100 times to the differential equations.

Euler integration

The Euler is a first order explicit integration method. It is the default one for nonlinear equations. It is simply
implemented as X(t+dt)=X(t)+f(X)*dt.

Exponential Euler integration

The exponential Euler method is used for Hodgkin-Huxley type equations, are which stiff. Equations of that type are
conditionally linear, that is, the differential equation for each variable is linear in that variable (i.e., linear if all other
variables are considered constant). The idea is thus to solve the differential equation for each variable over one time
step, assuming that all other variables are constant over that time step. The numerical scheme is still first order, but it
is more stable than the forward Euler method. Each equation can be written as dx/dt=a*x+b, where a and b depend on
the other variables and thus change after each time step. The values of a and b are obtained during the update phase
by calculating a*x+b for x=0 and x=1 (note that these values are different for every neuron, thus we calculate vectors
A and B). Then x(t+dt) is calculated in the same way as for the exact integration method above.

4.14.5 Stochastic differential equations

Noise is introduced in differential equations with the keyword xi, which means normalised gaussian noise (the deriva-
tive of the Brownian term). Currently, this is implemented simply by adding a normal random number to the vari-
able at the end of the integration step (independently for each neuron). The unit of white noise is non-trivial, it is
second**(-.5). Thus, a typical stochastic equation reads:

dx/dt=-x/tau+sigma*xi/tau**.5

where sigma is in the same units as x. We note the following two facts:

• The noise term is independent between neurons. Thus, one cannot use this method to analyse the response
to frozen noise (where all neurons receive the same input noise). One would need to use an external variable
representing the input, updated by a user-defined operation.

• The noise term is independent between equations. This can however be solved by the following trick:

dx/dt=-x/tau+sigmax*u/tau**.5 : volt
dy/dt=-y/tau+sigmay*u/tau**.5 : volt
u=xi : second**(-.5)

Important notice

It is not possible to modulate the noise term with a variable (e.g. v*xi/tau**.5). One reason is that, with multi-
plicative noise, there is an ambiguity between the Ito and the Stratonovich interpretation. Unfortunately, this limitation
also applies to parameters, i.e., sigma*xi/tau**.5 is not possible if sigma is a parameter, as in the following ex-
ample:
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eqs=Equations(’’’dx/dt=-x/tau + sigma*xi/tau**.5 : volt
sigma : volt’’’)

group = NeuronGroup(1, eqs, threshold=’x>vt’)

However, the problem can usually be solved by some rewriting:

eqs=Equations(’’’dy/dt=-y/tau + xi/tau**.5 : 1
x=sigma*y : volt
sigma : volt’’’)

group = NeuronGroup(1, eqs, threshold = ’x>vt’)

4.14.6 Non-autonomous equations

The time variable t can be directly inserted into an equation string. It is replaced at run time by the current value of
the time variable for the relevant neuron group, and also appears as a state variable of the neuron group.

4.14.7 Freezing

External variables can be frozen by passing the keyword freeze=True (default = False) at initialization of a
NeuronGroup object. Then when the string defining the equations are compiled into Python functions (method
compile_functions()), the external variables are replaced by their float values (units are discarded). This can
result in a significant speed-up.

TODO: more on the implementation.

4.14.8 Compilation

State updates can be compiled into Python code objects by passing the keyword compile=True at initialization
of a a NeuronGroup. Note that this is different from the method compile_functions(), which compiles the
equation for every variable into a Python function (not the whole state update process).

When the compile keyword is set, the method forward_euler_code() or exponential_euler_code()
is called. It generates a string containing the Python code for the update of all state variables (one time step), then
compiles it into Python code object. That compiled object is then called at every time step. All external variables are
frozen in the process (regardless of the value of the freeze keyword). This results in a significant speed-up (although
the exponential Euler code is not quite optimised yet). Note that only Python code is generated, thus a C compiler is
not required.

4.14.9 Working with equations

Equations object can also be used outside simulations. In the following, we suppose that an Equations object is
defined as follows:

eqs=Equations(’’’
dx/dt=(y-x)/(10*ms) : volt
dy/dt=-z/(5*ms) : volt
z=2*(x+y) : volt
’’’)
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Applying an equation

The value of z can be calculated using the apply() method:

z=eqs.apply(’z’,dict(x=3*mV,y=5*mV))

The second argument is a dictionary containing the values of all dependent variables (here the result is 8*mV). The
right-hand side of differential equations can also be calculated in the same way:

x=eqs.apply(’x’,dict(x=2*mV,y=3*mV))
y=eqs.apply(’y’,dict(x=2*mV,y=3*mV))

Note in the second case that only the values of the dynamic variables should be passed.

Calculating a fixed point

A fixed point of the equations can be calculated as follows:

fp=eqs.fixedpoint(x=2*mV,y=3*mV)

where the optional keywords give the initial point (zero if not provided). Internally, the function optimize.fsolve
from the Scipy package is used to find a zero of the set of differential equations (thus, convergence is not guaranteed;
in that case, the initial values are returned). A dictionary with the values of the dynamic variables at the fixed point is
returned.

Issues

• If the equations were previously frozen, then the units disappear from the equations and unit consistency prob-
lems may arise.

• Equations objects need to be “prepared” before use, as follows:

eqs.prepare()

This is automatically called by the NeuronGroup initialiser.

4.15 File management

A few functions are provided to read files with common formats.

The function read_neuron_dat() reads a Neuron .dat text file and returns a vector of times and a vector of values.
This is the format used by the Neuron simulator when saving the time-varying value of a variable from the GUI. For
example:

t, v = read_neuron_dat(’myfile.dat’)

The function read_atf() reads an Axon .atf text file and returns a vector of times and a vector of values. This is a
format used to store data recorded with Axon amplifiers. Note that metadata stored in the file are not extracted. Binary
.abf files are currently not supported.

See also Input/output.
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4.16 Managing simulation runs and data

Often, you want to run a simulation multiple times with different parameters to generate data for a plot. There are
many different ways to manage this, and Brian has a few tools to make it easier.

4.16.1 Saving data by hand

The simplest strategy is to run your simulation, and then save the data with a unique filename using either pickle,
writing text or binary data to a file with Python, or with Numpy and Scipy.

4.16.2 Structured data formats

Another option is to use a more structured file type, for example, you could use the high performance HDF5 scientific
data file format with PyTables.

Python also includes an object for storing data in a dictionary like database object with the shelve module.

Brian includes a simple modification of Python’s shelves to make it easy to generate data in parallel on a single
machine or across several machines. The problem with Python shelves and HDF5 is that they cannot be accessed by
several processes on a single machine concurrently (if two processes attempt to write to the file at the same time it
gets corrupted). In addition, if you want to run simulations on two computers at once and merge them you have to
write a separate program to merge the databases produced. With the DataManager class, you generate a directory
containing multiple files, and the data can be distributed amongst these files. To merge the results generated on two
different computers just copy the contents of one directory into the other. The way it works is that to write data to a
DataManager, you first generate a ‘’session” object (which is essentially a Python shelf object) and then write data
to that. However, when you want to read data, it will look in all the files in the directory and return merged data from
them. Typically, a session file will have the form username.computername so that merging directories across
multiple computers/users is straightforward (no name conflicts). You can also create a ‘’locking session’‘. This object
can be used in multiple processes concurrently without danger of losing data.

4.16.3 Multiple runs in parallel

The Python multiprocessing module can be used for relatively simply distributing simulation runs over multiple CPUs.
Alternatively, you could use Playdoh (produced by our group) to distribute work over multiple CPUs and multiple
machines. For other solutions, see the “Parallel and distributed programming” section of the Scipy Topical Software
page.

Brian provides a simple, single machine technique that works with the DataManager object, run_tasks(). With
this, you provide a function and a sequence of arguments to that function, and the function calls will be evaluated
across multiple CPUs, with the results being stored in the data manager. It also features a GUI which gives feedback
on simulations as they run, and can be used to safely stop the processes without risking losing any data. A simple
example of using this technique:

from brian import *
from brian.tools.datamanager import *
from brian.tools.taskfarm import *

def find_rate(k, report):
eqs = ’’’
dV/dt = (k-V)/(10*ms) : 1
’’’
G = NeuronGroup(1000, eqs, reset=0, threshold=1)
M = SpikeCounter(G)
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run(30*second, report=report)
return (k, mean(M.count)/30)

if __name__==’__main__’:
N = 20
dataman = DataManager(’taskfarmexample’)
if dataman.itemcount()<N:

M = N-dataman.itemcount()
run_tasks(dataman, find_rate, rand(M)*19+1)

X, Y = zip(*dataman.values())
plot(X, Y, ’.’)
xlabel(’k’)
ylabel(’Firing rate (Hz)’)
show()

Finally, a more sophisticated solution for “managing and tracking projects, based on numerical simulation or analysis,
with the aim of supporting reproducible research” is Sumatra.

For more detailed information, see the reference chapter.
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CHAPTER

FIVE

THE LIBRARY

A number of standard models is defined in the library folder. To use library elements, use the following syntax:

from brian.library.module_name import *

For example, to import electrophysiology models:

from brian.library.electrophysiology import *

5.1 Library models

5.1.1 Membrane equations

Library models are defined using the MembraneEquation class. This is a subclass of Equationswhich is defined
by a capacitance C and a sum of currents. The following instruction:

eqs=MembraneEquation(200*pF)

defines the equation C*dvm/dt=0*amp, with the membrane capacitance C=200 pF. The name of the membrane poten-
tial variable can be changed as follows:

eqs=MembraneEquation(200*pF,vm=’V’)

The main interest of this class is that one can use it to build models by adding currents to a membrane equation.
The Current class is a subclass of Equations which defines a current to be added to a membrane equation. For
example:

eqs=MembraneEquation(200*pF)+Current(’I=(V0-vm)/R : amp’,current_name=’I’)

defines the same equation as:

eqs=Equations(’’’
dvm/dt=I/(200*pF) : volt
I=(V0-vm)/R : amp
’’’)

The keyword current_name is optional if there is no ambiguity, i.e., if there is only one variable or only one
variable with amp units. As for standard equations, Current objects can be initialised with a multiline string (several
equations). By default, the convention for the current direction is the one for injected current. For the ionic current
convention, use the IonicCurrent class:

eqs=MembraneEquation(200*pF)+IonicCurrent(’I=(vm-V0)/R : amp’)

223



Brian Documentation, Release 1.4.1

5.1.2 Compartmental modelling

Compartmental neuron models can be created by merging several MembraneEquation objects, with the
compartments module. If soma and dendrite are two compartments defined as MembraneEquation ob-
jects, then a neuron with those 2 compartments can be created as follows:

neuron_eqs=Compartments({’soma’:soma,’dendrite’:dendrite})
neuron_eqs.connect(’soma’,’dendrite’,Ra)
neuron=NeuronGroup(1,model=neuron_eqs)

The Compartments object is initialised with a dictionary of MembraneEquation objects. The returned object
neuron_eqs is also a MembraneEquation object, where the name of each compartment has been appended to
variable names (with a leading underscore). For example, neuron.vm_soma refers to variable vm of the somatic
compartment. The connect method adds a coupling current between the two named compartments, with the given
resistance Ra.

5.1.3 Integrate-and-Fire models

A few standard Integrate-and-Fire models are implemented in the IF library module:

from brian.library.IF import *

All these functions return Equations objects (more precisely, MembraneEquation objects).

• Leaky integrate-and-fire model (dvm/dt=(El-vm)/tau : volt):

eqs=leaky_IF(tau=10*ms,El=-70*mV)

• Perfect integrator (dvm/dt=Im/tau : volt):

eqs=perfect_IF(tau=10*ms)

• Quadratic integrate-and-fire model (C*dvm/dt=a*(vm-EL)*(vm-VT) : volt):

eqs=quadratic_IF(C=200*pF,a=10*nS/mV,EL=-70*mV,VT=-50*mV)

• Exponential integrate-and-fire model (C*dvm/dt=gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)
:volt):

eqs=exp_IF(C=200*pF,gL=10*nS,EL=-70*mV,VT=-55*mV,DeltaT=3*mV)

In general, it is possible to define a neuron group with different parameter values for each neuron, by passing strings
at initialisation. For example, the following code defines leaky integrate-and-fire models with heterogeneous resting
potential values:

eqs=leaky_IF(tau=10*ms,El=’V0’)+Equations(’V0:volt’)
group=NeuronGroup(100,model=eqs,reset=0*mV,threshold=15*mV)

5.1.4 Two-dimensional IF models

Integrate-and-fire models with two variables can display a very rich set of electrophysiological behaviours. In Brian,
two such models have been implemented: Izhikevich model and Brette-Gerstner adaptive exponential integrate-and-
fire model (also included in the IF module). The equations are obtained in the same way as for one-dimensional
models:
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eqs=Izhikevich(a=0.02/ms,b=0.2/ms)
eqs=Brette_Gerstner(C=281*pF,gL=30*nS,EL=-70.6*mV,VT=-50.4*mV,DeltaT=2*mV,tauw=144*ms,a=4*nS)
eqs=aEIF(C=281*pF,gL=30*nS,EL=-70.6*mV,VT=-50.4*mV,DeltaT=2*mV,tauw=144*ms,a=4*nS) # equivalent

and two state variables are defined: vm (membrane potential) and w (adaptation variable). The equivalent equations
for Izhikevich model are:

dvm/dt=(0.04/ms/mV)*vm**2+(5/ms)*vm+140*mV/ms-w : volt
dw/dt=a*(b*vm-w) : volt/second

and for Brette-Gerstner model:

C*dvm/dt=gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)-w :volt
dw/dt=(a*(vm-EL)-w)/tauw : amp

To simulate these models, one needs to specify a threshold value, and a good choice is VT+4*DeltaT. The reset is
particular in these models since it is bidimensional: vm->Vr and w->w+b. A specific reset class has been implemented
for this purpose: AdaptiveReset, initialised with Vr and b. Thus, a typical construction of a group of such models
is:

eqs=Brette_Gerstner(C=281*pF,gL=30*nS,EL=-70.6*mV,VT=-50.4*mV,DeltaT=2*mV,tauw=144*ms,a=4*nS)
group=NeuronGroup(100,model=eqs,threshold=-43*mV,reset=AdaptiveReset(Vr=-70.6*mvolt,b=0.0805*nA))

5.1.5 Synapses

A few simple synaptic models are implemented in the module synapses:

from brian.library.synapses import *

All the following functions need to be passed the name of the variable upon which the received spikes will act, and the
name of the variable representing the current or conductance. The simplest one is the exponential synapse:

eqs=exp_synapse(input=’x’,tau=10*ms,unit=amp,output=’x_current’)

It is equivalent to:

eqs=Equations(’’’
dx/dt=-x/tau : amp
x_out=x
’’’)

Here, x is the variable which receives the spikes and x_current is the variable to be inserted in the membrane
equation (since it is a one-dimensional synaptic model, the variables are the same). If the output variable name is not
defined, then it will be automatically generated by adding the suffix _out to the input name.

Two other types of synapses are implemented. The alpha synapse (x(t)=alpha*(t/tau)*exp(1-t/tau),
where alpha is a normalising factor) is defined with the same syntax by:

eqs=alpha_synapse(input=’x’,tau=10*ms,unit=amp)

and the bi-exponential synapse is defined by (x(t)=(tau2/(tau2-tau1))*(exp(-t/tau1)-exp(-t/tau2)),
up to a normalising factor):

eqs=biexp_synapse(input=’x’,tau1=10*ms,tau2=5*ms,unit=amp)

For all types of synapses, the normalising factor is such that the maximum of x(t) is 1. These functions can be used as
in the following example:
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eqs=MembraneEquation(C=200*pF)+Current(’I=gl*(El-vm)+ge*(Ee-vm):amp’)
eqs+=alpha_synapse(input=’ge_in’,tau=10*ms,unit=siemens,output=’ge’)

where alpha conductances have been inserted in the membrane equation.

One can directly insert synaptic currents with the functions exp_current, alpha_current and
biexp_current:

eqs=MembraneEquation(C=200*pF)+Current(’I=gl*(El-vm):amp’)+\
alpha_current(input=’ge’,tau=10*ms)

(the units is amp by default), or synaptic conductances with the functions exp_conductance,
alpha_conductance and biexp_conductance:

eqs=MembraneEquation(C=200*pF)+Current(’I=gl*(El-vm):amp’)+\
alpha_conductance(input=’ge’,E=0*mV,tau=10*ms)

where E is the reversal potential.

5.1.6 Ionic currents

A few standard ionic currents have implemented in the module ionic_currents:

from brian.library.ionic_currents import *

When the current name is not specified, a unique name is generated automatically. Models can be constructed by
adding currents to a MembraneEquation.

• Leak current (gl*(El-vm)):

current=leak_current(gl=10*nS,El=-70*mV,current_name=’I’)

• Hodgkin-Huxley K+ current:

current=K_current_HH(gmax,EK,current_name=’IK’):

• Hodgkin-Huxley Na+ current:

current=Na_current_HH(gmax,ENa,current_name=’INa’):

5.2 Random processes

To import the random processes library:

from brian.library.random_processes import *

For the moment, only the Ornstein-Uhlenbeck process has been included. The function OrnsteinUhlenbeck()
returns an Equations object. The following example defines a membrane equation with an Ornstein-Uhlenbeck
current I (= coloured noise):

eqs=Equations(’dv/dt=-v/tau+I/C : volt’)
eqs+=OrnsteinUhlenbeck(’I’,mu=1*nA,sigma=2*nA,tau=10*ms)

where mu is the mean of the current, sigma is the standard deviation and tau is autocorrelation time constant.
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5.3 Electrophysiology: models

The electrophysiology library contains a number of models of electrodes, amplifiers and recording protocols to simu-
late intracellular electrophysiological recordings. To import the electrophysiology library:

from brian.library.electrophysiology import *

There is a series of example scripts in the examples/electrophysiology folder.

5.3.1 Electrodes

Electrodes are defined as resistor/capacitor (RC) circuits, or multiple RC circuits in series. Define a simple RC elec-
trode with resistance Re and capacitance Ce (possibly 0 pF) as follows:

el=electrode(Re,Ce)

The electrode function returns an Equations object containing the electrode model, where the electrode poten-
tial is v_el (the recording), the membrane potential is vm, the electrode current entering the membrane is i_inj
and command current is i_cmd. These names can be overriden using the corresponding keywords. For example, a
membrane equation with a .5 nA current injected through an electrode is defined as follows:

eqs=Equations(’dv/dt=(-gl*v+i_inj)/Cm : volt’)+electrode(50*Mohm,10*pF,vm=’v’,i_cmd=.5*nA)

Specify i_cmd=None if the electrode is only used to record (no current injection). More complex electrodes can be
defined by passing lists of resistances and capacitances, e.g.:

el=electrode([50*Mohm,20*Mohm],[5*pF,3*pF])

5.3.2 Amplifiers

Current-clamp amplifier

A current-clamp amplifier injects a current through an intracellular electrode and records the membrane potential.
Two standard circuits are included to compensate for the electrode voltage: bridge compensation and capacitance
neutralization (see e.g. the Axon guide). The following command:

amp=current_clamp(Re=80*Mohm,Ce=10*pF)

defines a current-clamp amplifier with an electrode modelled as a RC circuit. The function returns an Equations
object, where the recording potential is v_rec, the membrane potential is vm, the electrode current entering the mem-
brane is i_inj and command current is i_cmd. These names can be overriden using the corresponding keywords.
For implementation reasons, the amplifier always includes an electrode. Optionally, bridge compensation, can be used
with the bridge keyword and capacitance neutralization with the capa_comp keyword. For example, the following
instruction defines a partially compensated recording:

amp=current_clamp(Re=80*Mohm,Ce=10*pF,bridge=78*Mohm,capa_comp=8*pF)

The capacitance neutralization is a feedback circuit, so that it becomes unstable if the feedback capacitance is
larger than the actual capacitance of the electrode. The bridge compensation is an input-dependent voltage offset
(bridge*i_cmd), and thus is always stable (unless an additional feedback, such as dynamic clamp, is provided).
Note that the bridge and capacitance neutralization parameters can be variable names, e.g.:

amp=current_clamp(Re=80*Mohm,Ce=10*pF,bridge=’Rbridge’,capa_comp=8*pF)

and then the bridge compensation can be changed dynamically during the simulation.
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Voltage-clamp amplifier

The library includes a single-electrode voltage-clamp amplifier, which clamps the potential at a given value and records
the current going through the electrode. The following command:

amp=voltage_clamp(Re=20*Mohm)

defines a voltage-clamp amplifier with an electrode modelled as a pure resistance. The function returns an
Equations object, where the recording current is i_rec, the membrane potential is vm, the electrode current
entering the membrane is i_inj and command voltage is v_cmd (note that i_rec = - i_inj). These names can
be overriden using the corresponding keywords. For implementation reasons, the amplifier always includes an elec-
trode. Electrode capacitance is not included, meaning that the capacitance neutralization circuit is always set at the
maximum value. The quality of the clamp is limited by the electrode or ‘’series” resistance, which can be compen-
sated in a similar way as bridge compensation in current-clamp recordings. Series resistance compensation consists
in adding a current-dependent voltage offset to the voltage command. Because of the feedback, that compensation
needs to be slightly delayed (with a low-pass circuit). The following example defines a voltage-clamp amplifier with
half-compensated series resistance and compensation delay 1 ms:

amp=voltage_clamp(Re=20*Mohm,Rs=10*Mohm,tau_u=1*ms)

The tau_u keyword is optional and defaults to 1 ms.

Acquisition board

An acquisition board samples a recording and sends a command (e.g. injected current) at regular times. It is defined
as a NeuronGroup. Use:

board=AcquisitionBoard(P=neuron,V=’V’,I=’I’,clock)

where P = neuron group (possibly containing amplifier and electrode), V = potential variable name, I = current variable
name, clock = acquisition clock. The recording variable is then stored in board.record and a command is sent
with the instruction board.command=I.

Discontinuous current clamp

The discontinuous current clamp (DCC) consists in alternatively injecting current and measuring the potential, in order
to measure the potential when the voltage across the electrode has vanished. The sampling clock is mainly determined
by the electrode time constant (the sampling period should be two orders of magnitude larger than the electrode time
constant). It is defined and used in the same way as an acquisition board (above):

board=DCC(P=neuron,V=’V’,I=’I’,frequency=2*kHz)

where frequency is the sampling frequency. The duty cycle is 1/3 (meaning current is injected during 1/3 of each
sampling step).

Discontinuous voltage clamp

The discontinuous voltage clamp or single-electrode voltage clamp (SEVC) is an implementation of the voltage clamp
using a feedback current with a DCC amplifier. It is defined as the DCC:

board=SEVC(P=neuron,V=’V’,I=’I’,frequency=2*kHz,gain=10*nS)

except that a gain parameter is included. The SEVC injects a negative feedback current I=gain*(Vcommand-V). The
quality of the clamp improves with higher gains, but there is a maximum value above which the system is unstable, be-
cause of the finite temporal resolution. The recorded current is stored in board.record and the command voltage is
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sent with the instruction board.command=-20*mV. With this implementation of the SEVC, the membrane is never
perfectly clamped. A better clamp is obtained by adding an integral controller with the keyword gain2=10*nS/ms.
The additional current J(t) is governed by the differential equation dJ/dt=gain2*(Vcommand-V), so that it ensures
perfect clamping in the stationary state. However, this controller does not improve the settling time of the clamp, but
only the final voltage value.

Active Electrode Compensation

The electrophysiology library includes the Active Electrode Compensation (AEC) technique described in Brette et
al (2008), High-resolution intracellular recordings using a real-time computational model of the electrode, Neuron
59(3):379-91.

It can be applied offline, or online, using the models of experimental setup described above. (for dynamic-clamp or
voltage-clamp recordings, the electrode compensation must be done online). An AEC board is initialized in the same
way as an acquisition board:

board=AEC(neuron,’V’,’I’,clock)

where clock is the acquisition clock. The estimation phase typically looks like:

board.start_injection()
run(2*second)
board.start_injection()
run(100*ms)
board.estimate()

where white noise is injected for 2 seconds (default amplitude .5 nA). You can change the default amplitude and DC
current as follows: board.start_injection(amp=.5*nA,DC=1*nA). After estimation, the kernel is stored
in board.Ke. The following options can be passed to the function estimate: ksize (default 150 sampling
steps), ktail (default 50 sampling steps) and dendritic (default False, use True is the recording is a thin
process, i.e., axon or dendrite). Online compensation is then switched on with board.switch_on() and off with
board.switch_off(). For example, to inject a .5 nA current pulse for 200 ms, use the following instructions:

board.switch_on()
board.command=.5*nA
run(200*ms)
board.command=0*nA
run(150*ms)
board.switch_off()

During the simulation, the variable board.record stores the compensated potential.

5.4 Electrophysiology: electrode compensation

The electrophysiology library also contains methods to compensate for the electrode voltage in single-electrode current
clamp recordings. To import the electrophysiology library:

from brian.library.electrophysiology import *

There is a series of example scripts in the examples/electrophysiology folder.

5.4.1 Active Electrode Compensation (AEC)

The electrophysiology library includes the Active Electrode Compensation (AEC) technique described in Brette et
al (2008), High-resolution intracellular recordings using a real-time computational model of the electrode, Neuron
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59(3):379-91.

Given a digital current-clamp recording of the (uncompensated) potential v (vector of values) and injected current i,
the following instructions calculate the full kernel of the system and the electrode kernel:

K=full_kernel(v,i,ksize)
Ke=electrode_kernel_soma(K,start_tail)

ksize is the size of the full kernel (number of sampling steps; typical size is about 15 ms) and start_tail is the
size of the electrode kernel (start point of the ‘’tail” of the full kernel; typical size if about 4 ms). The electrode should
be compensated for capacitance (capacitance neutralization) but not resistance (bridge compensation). The best choice
for the input current is a series of independent random values, and the last ksize steps of v should be null (i.e., the
injection should stop before the end). Here it was assumed that the recording was done at the soma; if it is done in
a thin process such as a dendrite or axon, the function electrode_kernel_dendrite should be used instead.
The full kernel can also be obtained from a step current injection:

K=full_kernel_from_step(v,i,ksize)
Ke=electrode_kernel_soma(K,start_tail)

where i is a constant value in this case (note that this is not the best choice for real recordings).

Once the electrode kernel has been found, any recording can be compensated as follows:

vcomp=AEC_compensate(v,i,ke)

where v is the raw voltage recording, i is the injected current and ke is the electrode kernel.

5.4.2 Lp compensation

The Lp compensation is an other electrode compensation method. It is based on linear model fitting of an electrode
and a neuron in response to an injected current. The fitness function is the Lp error between the full model response
and the raw trace, with p<2 to minimize the bias due to the nonlinear voltage excursions of action potentials.

You can use it like this:

Vcomp, params = Lp_compensate(I, Vraw, .1*ms)

where I is the injected current, Vraw is the raw voltage trace, and the last parameter is the inverse of the sampling
frequency. I and Vraw must be 1D Numpy arrays with the same length. The Lp_compensate function returns
the compensated trace Vcomp and the best parameters params, which is a 2D Numpy array where each column
contains the parameters R, tau, Vr, Re, taue. Columns correspond to consecutive slices of the current and the voltage,
the compensation is performed independently on each slice. The duration of the slices can be specified with the
slice_duration keyword argument. Also, the p parameter can also be specified as a keyword argument.

5.5 Electrophysiology: trace analysis

The electrophysiology library also contains methods to analyze intracellular recordings. To import the electrophysiol-
ogy library:

from brian.library.electrophysiology import *

There is a series of example scripts in the examples/electrophysiology folder. Currently, most methods are related to
the analysis of spike shape.
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5.5.1 Miscellaneous

You can low-pass filter a trace as follows:

v_lp=lowpass(v, tau)

where tau is the time constant (cut-off frequency 1/(2*pi*tau)) and v is the trace (a vector of values). By default, tau
is in units of the timestep. Alternatively, one can specify the timestep:

v_lp=lowpass(v, tau, dt=0.1*ms)

5.5.2 Spike analysis

Detecting spikes

The following function returns the time indexes of spike peaks in a trace v:

peaks=spike_peaks(v, vc=-10*mV)

where vc is the voltage criterion (we consider that there is a spike when v>vc). The algorithm works as follows. First,
we identify positive crossings of the voltage criterion. Then, after each positive crossing, we look for the first local
maximum (that is, when the voltage first starts decreasing). The last spike is treated differently because the peak may
occur after the end of the recording, in which case the last element is considered as the peak.

It is possible to omit the voltage criterion vc. In this case, it is guessed with the following (rather complex) function:

vc=find_spike_criterion(v)

The idea of this algorithm is to look at the trace in phase space (v,dv/dt). In this space, spikes tend to circle around
some area which contains no trajectory. It appears that, somewhere in the middle of these circles, there is a voltage vc
for which trajectories are either increasing (dv>0, upstroke of a spike) or decreasing (dv<0, downstroke of a spike) but
never still (dv=0). This means that a positive crossing of this voltage always leads to a spike. We identify this voltage
by looking for the largest interval of voltages (v1,v2) for which there is no sign change of dv/dt (over two successive
timesteps), and we set vc=(v1+v2)/2, the middle of this interval.

As this method is rather complex, it is strongly advised to manually check whether it gives reasonable results.

Voltage reset

The average voltage reset after a spike is calculated as the average first minimum after a spike, with the following
function:

reset=reset_potential(v, peaks=None, full=False)

The time indexes of spike peaks can be given (this may save some computation time). With the full=True option,
the standard deviation is also returned.

Spike threshold

There are 3 ways to measure the spike threshold. The first derivative method uses a threshold criterion on the first
derivative dv/dt to identify spike onsets:

onsets=spike_onsets(v, criterion=None, vc=None)
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where criterion is the derivative criterion and vc is the voltage criterion to detect spikes. Note that the criterion
is in units of voltage per time step. First, the algorithm detects spike peaks. Then for each spike, we look for the last
local maximum of dv/dt before the spike, which should be the inflexion point of the spike. Then we identify the last
time before the inflexion point when dv/dt is smaller than the criterion. The function returns the time indexes of the
onsets, not their values (which are v[onsets]). The derivative criterion may be automatically determined, using the
following function:

criterion=find_onset_criterion(v, guess=0.1, vc=None)

where guess is an optional initial guess for the optimization method. The algorithm is simple: find the criterion that
minimizes the variability of onsets.

There are two other methods to measure spike thresholds, but they do not always give very good results (perhaps the
trace should be preliminary filtered):

onsets2=spike_onsets_dv2(v, vc=None)
onsets3=spike_onsets_dv3(v, vc=None)

The first one finds the maximum of the second derivative d2v/dt2, the second one finds the maximum of d3v/dt3.
These are global maxima in each interspike interval (it could be that looking for the last local maximum gives better
results).

The following function returns the depolarization slope preceding each spike as an array:

slopes=slope_threshold(v, onsets=None, T=None)

In this function, spike onset indexes are passed through the onset keyword. The depolarization slope is calculated
by linear regression over the T time bins preceding each spike. The result is in units of the time bin.

In a similar way, the following function returns the average membrane potential preceding each spike as an array:

vm_threshold(v, onsets=None, T=None):

Spike shape

The following function returns the average spike duration, defined as the time from onset to reset (next voltage mini-
mum):

duration=spike_duration(v)

The onsets can be passed to save computation time, with the onsets keyword. With the option full=True, the
function returns: the mean time from onset to peak, the mean time from onset down to same value (note that this may
not be meaningful for some neurons), mean time from onset to next minimum, and standard deviations for these 3
values.

Note: this function may change.

The following function returns the average spike-triggered voltage:

shape=spike_shape(v, onsets=None, before=100, after=100)

If onsets is unspecified, it is calculated with the spike_onsets function. Note that you can align spikes on other
times, for example peaks. The arguments before and after specify the number of time steps before and after the
triger times.

Note: this should not be specific to spikes, it’s a stimulus-triggered average.
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Spike mask

It is often useful to discard spikes from the trace to analyse it. The following function returns an array of booleans
which are True in spikes:

spike_mask(v, spikes=None, T=None)

The starting point of each spike (time bin) is given by the spikes variable (default: onsets), and T is the duration of
each spike in time bins. This function can then be used to select the subthreshold trace or the spikes:

v_subthreshold=v[-spike_mask(v,T=100)]
v_spikes=v[spike_mask(v,T=100)]

5.6 Model fitting

The modelfitting library is used for fitting a neuron model to data.

The library provides a single function modelfitting(), which accepts the model and the data as arguments and
returns the model parameters that fit best the data. The model is a spiking neuron model, whereas the data consists
of both an input (time-varying signal, for example an injected current) and a set of spike trains. Only spikes are
considered for the fitness. Several target spike trains can be specified in order to fit independently several data sets. In
this case, the modelfitting() function returns as many parameters sets as there are target spike trains.

The model is defined as any spiking neuron model in Brian, by giving the equations as mathematical equations, and
the reset and threshold values. The free parameters of the model that shall be fitted by the library are also specified.
The data is specified by the input (a vector containing the time-varying injected current), the timestep of the input, and
the data as a list of spike times.

5.6.1 How it works

Fitting a spiking neuron model to electrophysiological data is performed by maximizing a fitness function measuring
the adequacy of the model to the data. This function is defined as the gamma factor, which is based on the number of
coincidences between the model spikes and the experimentally-recorded spikes, defined as the number of spikes in the
experimental train such that there is at least one spike in the model train within plus or minus delta, where delta
is the size of the temporal window (typically a few milliseconds). For more details on the gamma factor, see Jolivet et
al. 2008, “A benchmark test for a quantitative assessment of simple neuron models”, J. Neurosci. Methods (available
in PDF here).

The optimization procedure is performed by an optimization algorithm. The optimization toolbox used by modelfitting
is implemented in the external Python package Playdoh. It also supports distributed and parallel optimization across
CPUs and machines. Different optimization algorithms are supported, the default one is CMAES. All those algorithms
require the evaluation of the fitness function for a large number of parameter sets. Each iteration of the algorithm
involves the simulation of a large number of neurons (one neuron corresponding to one parameter set) as well as the
computation of the gamma factor for each neuron. The quality of the result depends on the number of neurons used,
which is specified in the modelfitting() function.

Playdoh supports the use of graphical processing units (GPUs) in order to accelerate the speed of convergence of the
algorithm. If multiple cores are detected, the library will use all of them by default. Also, if a CUDA-enabled GPU is
present on the system, and if PyCUDA is installed, the library will automatically use the GPU by default. In addition,
several computers can be networked over IP, see Clusters.

5.6.2 Usage example

To import the library, use
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from brian.library.modelfitting import *

To fit the parameters of a neuron model with respect to some data, use the modelfitting() function

results = modelfitting(model = equations, reset = 0, threshold = 1,
data = spikes,
input = input, dt = .1*ms,
popsize = 1000, maxiter = 10,
R = [1.0e9, 1.0e10], tau = [1*ms, 50*ms])

print_table(results)

Warning: Windows users should read the section Important note for Windows users.

The model is defined by equations (an Equations object), reset (a scalar value or a set of equations as a
string) and threshold (a scalar value or a set of equations as a string).

The target spike trains are defined by data (a list of pairs (neuron index, spike time) or a list of spike
times if there is only one target spike train).

The input is specified with input (a vector containing the time-varying signal) and dt (the time step of the signal).
The input variable should be I in the equations, although the input variable name can be specified with input_var.

The number of particles per target train used in the optimization algorithm is specified with popsize. The total
number of neurons is popsize multiplied by the number of target spike trains. The number of iterations in the
algorithm is specified with maxiter.

Each free parameter of the model that shall be fitted is defined by two values

param_name = [min, max]

param_name should correspond to the parameter name in the model equations. min and max specify the initial
interval from which the parameter values will be uniformly sampled at the beginning of the optimization algorithm. A
boundary interval can also be specified by giving four values

param_name = [bound_min, min, max, bound_max]

The parameter values will be forced to stay inside the interval [bound_min, bound_max] during the optimization.

The complete list of arguments can be found in the reference section of the modelfitting() function.

The best parameters and the corresponding best fitness values found by the optimization procedure are returned in the
OptimizationResult object result.

5.6.3 Important note for Windows users

The model fitting library uses the Python multiprocessing package to distribute fitting across processors in a single
computer or across multiple computers. However, there is a limitation of the Windows version of multiprocessing
which you can read about here. The end result is that a script like this:

from brian.library.modelfitting import *
...
results = modelfitting(...)

will crash, going into an endless loop and creating hundreds of Python processes that have to be shut down by hand.
Instead, you have to do this:
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from brian.library.modelfitting import *
...
if __name__==’__main__’:

results = modelfitting(...)

5.6.4 Clusters

The model fitting package can be used with a cluster of computers connected over IP. Every computer must have Brian
and Playdoh installed, and they must run the Playdoh server: see the Playdoh documentation. Then, you can launch
the ‘modelfitting function with the machines keyword, which is the list of the IP addresses of the machines
to use in parallel for the fitting procedure. You must also specify the unit_type keyword, which is CPU or GPU,
to indicate whether you want to use CPUs or GPUs on these computers. You can’t mix CPUs and GPUs for the same
optimization.

IP

To connect several machines via IP, pass a list of host names or IP addresses as strings to the machines keyword of
the modelfitting() function. To specify a specific port, use a tuple (IP, port) instead of a string. You can
also specify a default port in the Playdoh user preferences, see the Playdoh documentation.

Authentication

You can specify an authentication string on all the computers running the Playdoh server to secure communications.
See the Playdoh documentation.

Example

The following script launches a fitting procedure in parallel on two machines:

from brian import loadtxt, ms, Equations
from brian.library.modelfitting import *

if __name__ == ’__main__’:
# List of machines IP addresses
machines = [’bobs-machine.university.com’,

’jims-machine.university.com’]

equations = Equations(’’’
dV/dt=(R*I-V)/tau : 1
I : 1
R : 1
tau : second

’’’)
input = loadtxt(’current.txt’)
spikes = loadtxt(’spikes.txt’)
results = modelfitting( model = equations,

reset = 0,
threshold = 1,
data = spikes,
input = input,
dt = .1*ms,
popsize = 1000,
maxiter = 3,
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delta = 4*ms,
unit_type = ’CPU’,
machines = machines,
R = [1.0e9, 9.0e9],
tau = [10*ms, 40*ms],
refractory = [0*ms, 10*ms])

print_table(results)

The two remote machines would run the Playdoh server.

5.7 Brian hears

Brian hears is an auditory modelling library for Python. It is part of the neural network simulator package Brian, but
can also be used on its own. To download Brian hears, simply download Brian: Brian hears is included as part of the
package.

Brian hears is primarily designed for generating and manipulating sounds, and applying large banks of filters. We
import the package by writing:

from brian import *
from brian.hears import *

Then, for example, to generate a tone or a whitenoise we would write:

sound1 = tone(1*kHz, .1*second)
sound2 = whitenoise(.1*second)

These sounds can then be manipulated in various ways, for example:

sound = sound1+sound2
sound = sound.ramp()

If you have the pygame package installed, you can also play these sounds:

sound.play()

We can filter these sounds through a bank of 3000 gammatone filters covering the human auditory range as follows:

cf = erbspace(20*Hz, 20*kHz, 3000)
fb = Gammatone(sound, cf)
output = fb.process()
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The output of this would look something like this (zoomed into one region):

Alternatively, if we’re interested in modelling auditory nerve fibres, we could feed the output of this filterbank directly
into a group of neurons defined with Brian:

# Half-wave rectification and compression [x]^(1/3)
ihc = FunctionFilterbank(fb, lambda x: 3*clip(x, 0, Inf)**(1.0/3.0))
# Leaky integrate-and-fire model with noise and refractoriness
eqs = ’’’
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1
I : 1
’’’
anf = FilterbankGroup(ihc, ’I’, eqs, reset=0, threshold=1, refractory=5*ms)

This model would give output something like this:
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The human cochlea applies the equivalent of 3000 auditory filters, which causes a technical problem for modellers
which this package is designed to address. At a typical sample rate, the output of 3000 filters would saturate the
computer’s RAM in a few seconds. To deal with this, we use online computation, that is we only ever keep in memory
the output of the filters for a relatively short duration (say, the most recent 20ms), do our modelling with these values,
and then discard them. Although this requires that some models be rewritten for online rather than offline computation,
it allows us to easily handle models with very large numbers of channels. 3000 or 6000 for human monaural or
binaural processing is straightforward, and even much larger banks of filters can be used (for example, around 30,000
in Goodman DFM, Brette R (2010). Spike-timing-based computation in sound localization. PLoS Comput. Biol.
6(11): e1000993. doi:10.1371/journal.pcbi.1000993). Techniques for online computation are discussed below in the
section Online computation.

Brian hears consists of classes and functions for defining sounds, filter chains, cochlear models, neuron models and
head-related transfer functions. These classes are designed to be modular and easily extendable. Typically, a model
will consist of a chain starting with a sound which is plugged into a chain of filter banks, which are then plugged into
a neuron model.

The two main classes in Brian hears are Sound and Filterbank, which function very similarly. Each consists of
multiple channels (typically just 1 or 2 in the case of sounds, and many in the case of filterbanks, but in principle any
number of channels is possible for either). The difference is that a filterbank has an input source, which can be either
a sound or another filterbank.

All scripts using Brian hears should start by importing the Brian and Brian hears packages as follows:

from brian import *
from brian.hears import *
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To download Brian hears, simply download Brian: Brian hears is included as part of the package.

See Also:

Reference documentation for Brian hears, which covers everything in this overview in detail, and more. List of
examples of using Brian hears.

5.7.1 Sounds

Sounds can be loaded from a WAV or AIFF file with the loadsound() function (and saved with the savesound()
function or Sound.save() method), or by initialising with a filename:

sound = loadsound(’test.wav’)
sound = Sound(’test.aif’)
sound.save(’test.wav’)

Various standard types of sounds can also be constructed, e.g. pure tones, white noise, clicks and silence:

sound = tone(1*kHz, 1*second)
sound = whitenoise(1*second)
sound = click(1*ms)
sound = silence(1*second)

You can pass a function of time or an array to initialise a sound:

# Equivalent to Sound.tone
sound = Sound(lambda t:sin(50*Hz*2*pi*t), duration=1*second)

# Equivalent to Sound.whitenoise
sound = Sound(randn(int(1*second*44.1*kHz)), samplerate=44.1*kHz)

Multiple channel sounds can be passed as a list or tuple of filenames, arrays or Sound objects:

sound = Sound((’left.wav’, ’right.wav’))
sound = Sound((randn(44100), randn(44100)), samplerate=44.1*kHz)
sound = Sound((Sound.tone(1*kHz, 1*second),

Sound.tone(2*kHz, 1*second)))

A multi-channel sound is also a numpy array of shape (nsamples, nchannels), and can be initialised as this
(or converted to a standard numpy array):

sound = Sound(randn(44100, 2), samplerate=44.1*kHz)
arr = array(sound)

Sounds can be added and multiplied:

sound = Sound.tone(1*kHz, 1*second)+0.1*Sound.whitenoise(1*second)

For more details on combining and operating on sounds, including shifting them in time, repeating them, resampling
them, ramping them, finding and setting intensities, plotting spectrograms, etc., see Sound.

Sounds can be played using the play() function or Sound.play() method:

play(sound)
sound.play()

Sequences of sounds can be played as:

play(sound1, sound2, sound3)
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The number of channels in a sound can be found using the nchannels attribute, and individual channels can be
extracted using the Sound.channel() method, or using the left and right attributes in the case of stereo
sounds:

print sound.nchannels
print amax(abs(sound.left-sound.channel(0)))

As an example of using this, the following swaps the channels in a stereo sound:

sound = Sound(’test_stereo.wav’)
swappedsound = Sound((sound.right, sound.left))
swappedsound.play()

The level of the sound can be computed and changed with the sound.level attribute. Levels are returned in dB
which is a special unit in Brian hears. For example, 10*dB+10 will raise an error because 10 does not have units of
dB. The multiplicative gain of a value in dB can be computed with the function gain(level). All dB values are
measured as RMS dB SPL assuming that the values of the sound object are measured in Pascals. Some examples:

sound = whitenoise(100*ms)
print sound.level
sound.level = 60*dB
sound.level += 10*dB
sound *= gain(-10*dB)

5.7.2 Filter chains

The standard way to set up a model based on filterbanks is to start with a sound and then construct a chain of filterbanks
that modify it, for example a common model of cochlear filtering is to apply a bank of gammatone filters, and then
half wave rectify and compress it (for example, with a 1/3 power law). This can be achieved in Brian hears as follows
(for 3000 channels in the human hearing range from 20 Hz to 20 kHz):

cfmin, cfmax, cfN = 20*Hz, 20*kHz, 3000
cf = erbspace(cfmin, cfmax, cfN)
sound = Sound(’test.wav’)
gfb = GammatoneFilterbank(sound, cf)
ihc = FunctionFilterbank(gfb, lambda x: clip(x, 0, Inf)**(1.0/3.0))

The erbspace() function constructs an array of centre frequencies on the ERB scale. The
GammatoneFilterbank(source, cf) class creates a bank of gammatone filters with inputs coming
from source and the centre frequencies in the array cf. The FunctionFilterbank(source, func)
creates a bank of filters that applies the given function func to the inputs in source.

Filterbanks can be added and multiplied, for example for creating a linear and nonlinear path, e.g.:

sum_path_fb = 0.1*linear_path_fb+0.2*nonlinear_path_fb

A filterbank must have an input with either a single channel or an equal number of channels. In the former case, the
single channel is duplicated for each of the output channels. However, you might want to apply gammatone filters
to a stereo sound, for example, but in this case it’s not clear how to duplicate the channels and you have to specify
it explicitly. You can do this using the Repeat, Tile, Join and Interleave filterbanks. For example, if the
input is a stereo sound with channels LR then you can get an output with channels LLLRRR or LRLRLR by writing
(respectively):

fb = Repeat(sound, 3)
fb = Tile(sound, 3)

To combine multiple filterbanks into one, you can either join them in series or interleave them, as follows:
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fb = Join(source1, source2)
fb = Interleave(source1, source2)

For a more general (but more complicated) approach, see RestructureFilterbank.

Two of the most important generic filterbanks (upon which many of the others are based) are LinearFilterbank
and FIRFilterbank. The former is a generic digital filter for FIR and IIR filters. The latter is specifically for FIR
filters. These can be implemented with the former, but the implementation is optimised using FFTs with the latter
(which can often be hundreds of times faster, particularly for long impulse responses). IIR filter banks can be designed
using IIRFilterbank which is based on the syntax of the iirdesign scipy function.

You can change the input source to a Filterbank by modifying its source attribute, e.g. to change the input
sound of a filterbank fb you might do:

fb.source = newsound

Note that the new source should have the same number of channels.

You can implement control paths (using the output of one filter chain path to modify the parameters of another filter
chain path) using ControlFilterbank (see reference documentation for more details). For examples of this in
action, see the following:

• Example: time_varying_filter1 (hears).

• Example: time_varying_filter2 (hears).

• Example: dcgc (hears).

5.7.3 Connecting with Brian

To create spiking neuron models based on filter chains, you use the FilterbankGroup class. This acts exactly
like a standard Brian NeuronGroup except that you give a source filterbank and choose a state variable in the target
equations for the output of the filterbank. A simple auditory nerve fibre model would take the inner hair cell model
from earlier, and feed it into a noisy leaky integrate-and-fire model as follows:

# Inner hair cell model as before
cfmin, cfmax, cfN = 20*Hz, 20*kHz, 3000
cf = erbspace(cfmin, cfmax, cfN)
sound = Sound.whitenoise(100*ms)
gfb = Gammatone(sound, cf)
ihc = FunctionFilterbank(gfb, lambda x: 3*clip(x, 0, Inf)**(1.0/3.0))
# Leaky integrate-and-fire model with noise and refractoriness
eqs = ’’’
dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1
I : 1
’’’
G = FilterbankGroup(ihc, ’I’, eqs, reset=0, threshold=1, refractory=5*ms)
# Run, and raster plot of the spikes
M = SpikeMonitor(G)
run(sound.duration)
raster_plot(M)
show()

And here’s the output (after 6 seconds of computation on a 2GHz laptop):
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5.7.4 Plotting

Often, you want to use log-scaled axes for frequency in plots, but the built-in matplotlib axis labelling for log-scaled
axes doesn’t work well for frequencies. We provided two functions (log_frequency_xaxis_labels() and
log_frequency_yaxis_labels()) to automatically set useful axis labels. For example:

cf = erbspace(100*Hz, 10*kHz)
...
semilogx(cf, response)
axis(’tight’)
log_frequency_xaxis_labels()

5.7.5 Online computation

Typically in auditory modelling, we precompute the entire output of each channel of the filterbank (“offline compu-
tation”), and then work with that. This is straightforward, but puts a severe limit on the number of channels we can
use or the length of time we can work with (otherwise the RAM would be quickly exhausted). Brian hears allows us
to use a very large number of channels in filterbanks, but at the cost of only storing the output of the filterbanks for a
relatively short period of time (“online computation”). This requires a slight change in the way we use the output of the
filterbanks, but is actually not too difficult. For example, suppose we wanted to compute the vector of RMS values for
each channel of the output of the filterbank. Traditionally, or if we just use the syntax output = fb.process()
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in Brian hears, we have an array output of shape (nsamples, nchannels). We could compute the vector of
RMS values as:

rms = sqrt(mean(output**2, axis=0))

To do the same thing with online computation, we simply store a vector of the running sum of squares, and update it
for each buffered segment as it is computed. At the end of the processing, we divide the sum of squares by the number
of samples and take the square root.

The Filterbank.process() method allows us to pass an optional function f(output, running) of two
arguments. In this case, process() will first call running = f(output, 0) for the first buffered segment
output. It will then call running = f(output, running) for each subsequent segment. In other words, it
will “accumulate” the output of f, passing the output of each call to the subsequent call. To compute the vector of
RMS values then, we simply do:

def sum_of_squares(input, running):
return running+sum(input**2, axis=0)

rms = sqrt(fb.process(sum_of_squares)/nsamples)

If the computation you wish to perform is more complicated than can be achieved with the process() method, you
can derive a class from Filterbank (see that class’ reference documentation for more details on this).

5.7.6 Buffering interface

The Sound, OnlineSound and Filterbank classes (and all classes derived from them) all implement the same
buffering mechanism. The purpose of this is to allow for efficient processing of multiple channels in buffers. Rather
than precomputing the application of filters to all channels (which for large numbers of channels or long sounds would
not fit in memory), we process small chunks at a time. The entire design of these classes is based on the idea of buffer-
ing, as defined by the base class Bufferable (see section Options). Each class has two methods, buffer_init()
to initialise the buffer, and buffer_fetch(start, end) to fetch the portion of the buffer from samples with
indices from start to end (not including end as standard for Python). The buffer_fetch(start, end)
method should return a 2D array of shape (end-start, nchannels) with the buffered values.

From the user point of view, all you need to do, having set up a chain of Sound and Filterbank objects, is
to call buffer_fetch(start, end) repeatedly. If the output of a Filterbank is being plugged into a
FilterbankGroup object, everything is handled automatically. For cases where the number of channels is small
or the length of the input source is short, you can use the Filterbank.fetch(duration)() method to auto-
matically handle the initialisation and repeated application of buffer_fetch.

To extend Filterbank, it is often sufficient just to implement the buffer_apply(input) method. See the
documentation for Filterbank for more details.

5.7.7 Library

Brian hears comes with a package of predefined filter classes to be used as basic blocks by the user. All of them are
implemented as filterbanks.

First, a series of standard filters widely used in audio processing are available:
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Class Descripition Example
IIRFilterbankBank of low, high, bandpass or bandstop filter of type Chebyshef,

Elliptic, etc...
Example: IIRfilterbank
(hears)

Butterworth Bank of low, high, bandpass or bandstop Butterworth filters Example: butterworth
(hears)

LowPass Bank of lowpass filters of order 1 Example: cochleagram
(hears)

Second, the library provides linear auditory filters developed to model the middle ear transfer function and the fre-
quency analysis of the cochlea:

Class Description Example
MiddleEar Linear bandpass filter, based on middle-ear

frequency response properties
Example: tan_carney_simple_test
(hears/tan_carney_2003)

Gammatone Bank of IIR gammatone filters (based on Slaney
implementation)

Example: gammatone (hears)

ApproximateGammatoneBank of IIR gammatone filters (based on Hohmann
implementation)

Example: approximate_gammatone
(hears)

LogGammachirp Bank of IIR gammachirp filters with logarithmic
sweep (based on Irino implementation)

Example: log_gammachirp (hears)

LinearGammachirpBank of FIR chirp filters with linear sweep and
gamma envelope

Example: linear_gammachirp
(hears)

LinearGaborchirpBank of FIR chirp filters with linear sweep and
gaussian envelope

Finally, Brian hears comes with a series of complex nonlinear cochlear models developed to model nonlinear effects
such as filter bandwith level dependency, two-tones suppression, peak position level dependency, etc.

Class Description Example
DRNL Dual resonance nonlinear filter as described in

Lopez-Paveda and Meddis, JASA 2001
Example: drnl (hears)

DCGC Compressive gammachirp auditory filter as described in
Irino and Patterson, JASA 2001

Example: dcgc (hears)

TanCarney Auditory phenomenological model as described in Tan
and Carney, JASA 2003

Example: tan_carney_simple_test
(hears/tan_carney_2003)

ZhangSynapseModel of an inner hair cell – auditory nerve synapse
(Zhang et al., JASA 2001)

Example: tan_carney_simple_test
(hears/tan_carney_2003)

5.7.8 Head-related transfer functions

You can work with head-related transfer functions (HRTFs) using the three classes HRTF (a single pair of left/right
ear HRTFs), HRTFSet (a set of HRTFs, typically for a single individual), and HRTFDatabase (for working with
databases of individuals). At the moment, we have included only one HRTF database, the IRCAM_LISTEN public
HRTF database. However, we will add support for the CIPIC and MIT-KEMAR databases in a subsequent release.
There is also one artificial HRTF database, HeadlessDatabase used for generating HRTFs of artifically introduced
ITDs.

An example of loading the IRCAM database, selecting a subject and plotting the pair of impulse responses for a
particular direction:

hrtfdb = IRCAM_LISTEN(r’F:\HRTF\IRCAM’)
hrtfset = hrtfdb.load_subject(1002)
hrtf = hrtfset(azim=30, elev=15)
plot(hrtf.left)
plot(hrtf.right)
show()
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HRTFSet has a set of coordinates, which can be accessed via the coordinates attribute, e.g.:

print hrtfset.coordinates[’azim’]
print hrtfset.coordinates[’elev’]

You can also generated filterbanks associated either to an HRTF or an entire HRTFSet. Here is an example of doing
this with the IRCAM database, and applying this filterbank to some white noise and plotting the response as an image:

# Load database
hrtfdb = IRCAM_LISTEN(r’D:\HRTF\IRCAM’)
hrtfset = hrtfdb.load_subject(1002)
# Select only the horizontal plane
hrtfset = hrtfset.subset(lambda elev: elev==0)
# Set up a filterbank
sound = whitenoise(10*ms)
fb = hrtfset.filterbank(sound)
# Extract the filtered response and plot
img = fb.process().T
img_left = img[:img.shape[0]/2, :]
img_right = img[img.shape[0]/2:, :]
subplot(121)
imshow(img_left, origin=’lower left’, aspect=’auto’,

extent=(0, sound.duration/ms, 0, 360))
xlabel(’Time (ms)’)
ylabel(’Azimuth’)
title(’Left ear’)
subplot(122)
imshow(img_right, origin=’lower left’, aspect=’auto’,

extent=(0, sound.duration/ms, 0, 360))
xlabel(’Time (ms)’)
ylabel(’Azimuth’)
title(’Right ear’)
show()

This generates the following output:

For more details, see the reference documentation for HRTF, HRTFSet, HRTFDatabase, IRCAM_LISTEN and
HeadlessDatabase.

5.7. Brian hears 245



Brian Documentation, Release 1.4.1

246 Chapter 5. The library



CHAPTER

SIX

ADVANCED CONCEPTS

6.1 How to write efficient Brian code

There are a few keys to writing fast and efficient Brian code. The first is to use Brian itself efficiently. The second
is to write good vectorised code, which is using Python and NumPy efficiently. For more performance tips, see also
Compiled code.

6.1.1 Brian specifics

You can switch off Brian’s entire unit checking module by including the line:

import brian_no_units

before importing Brian itself. Good practice is to leave unit checking on most of the time when developing and
debugging a model, but switching it off for long runs once the basic model is stable.

Another way to speed up code is to store references to arrays rather than extracting them from Brian objects each time
you need them. For example, if you know the custom reset object in the code above is only ever applied to a group
custom_group say, then you could do something like this:

def myreset(P, spikes):
custom_group_V_[spikes] = 0*mV
custom_group_Vt_[spikes] = 2*mV

custom_group = ...
custom_group_V_ = custom_group.V_
custom_group_Vt_ = custom_group.Vt_

In this case, the speed increase will be quite small, and probably not worth doing because it makes it less readable, but
in more complicated examples where you repeatedly refer to custom_group.V_ it could add up.

6.1.2 Vectorisation

Python is a fast language, but each line of Python code has an associated overhead attached to it. Sometimes you
can get considerable increases in speed by writing a vectorised version of it. A good guide to this in general is the
Performance Python page. Here we will do a single worked example in Brian.

Suppose you wanted to multiplicatively depress the connection strengths every time step by some amount, you might
do something like this:
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C = Connection(G1, G2, ’V’, structure=’dense’)
...
@network_operation(when=’end’)
def depress_C():

for i in range(len(G1)):
for j in range(len(G2)):

C[i,j] = C[i,j]*depression_factor

This will work, but it will be very, very slow.

The first thing to note is that the Python expression range(N) actually constructs a list [0,1,2,...,N-1] each
time it is called, which is not really necessary if you are only iterating over the list. Instead, use the xrange iterator
which doesn’t construct the list explicitly:

for i in xrange(len(G1)):
for j in xrange(len(G2)):

C[i,j] = C[i,j]*depression_factor

The next thing to note is that when you call C[i,j] you are doing an operation on the Connection object, not directly
on the underlying matrix. Instead, do something like this:

C = Connection(G1, G2, ’V’, structure=’dense’)
C_matrix = asarray(C.W)
...
@network_operation(when=’end’)
def depress_C():

for i in xrange(len(G1)):
for j in xrange(len(G2)):

C_matrix[i,j] *= depression_factor

What’s going on here? First of all, C.W refers to the ConnectionMatrix object, which is a 2D NumPy array with
some extra stuff - we don’t need the extra stuff so we convert it to a straight NumPy array asarray(C.W). We also
store a copy of this as the variable C_matrix so we don’t need to do this every time step. The other thing we do is to
use the *= operator instead of the * operator.

The most important step of all though is to vectorise the entire operation. You don’t need to loop over i and j at all,
you can manipulate the array object with a single NumPy expression:

C = Connection(G1, G2, ’V’, structure=’dense’)
C_matrix = asarray(C.W)
...
@network_operation(when=’end’)
def depress_C():

C_matrix *= depression_factor

This final version will probably be hundreds if not thousands of times faster than the original. It’s usually possible to
work out a way using NumPy expressions only to do whatever you want in a vectorised way, but in some very rare
instances it might be necessary to have a loop. In this case, if this loop is slowing your code down, you might want
to try writing that loop in inline C++ using the SciPy Weave package. See the documentation at that link for more
details, but as an example we could rewrite the code above using inline C++ as follows:

from scipy import weave
...
C = Connection(G1, G2, ’V’, structure=’dense’)
C_matrix = asarray(C.W)
...
@network_operation(when=’end’)
def depress_C():

n = len(G1)
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m = len(G2)
code = ’’’

for(int i=0;i<n;i++)
for(int j=0;j<m;j++)

C_matrix(i,j) *= depression_factor
’’’

weave.inline(code,
[’C_matrix’, ’n’, ’m’, ’depression_factor’],
type_converters=weave.converters.blitz,
compiler=’gcc’,
extra_compile_args=[’-O3’])

The first time you run this it will be slower because it compiles the C++ code and stores a copy, but the second time will
be much faster as it just loads the saved copy. The way it works is that Weave converts the listed Python and NumPy
variables (C_matrix, n, m and depression_factor) into C++ compatible data types. n and m are turned into
int‘‘s, ‘‘depression_factor is turned into a double, and C_matrix is turned into a Weave Array
class. The only thing you need to know about this is that elements of a Weave array are referenced with parentheses
rather than brackets, i.e. C_matrix(i,j) rather than C_matrix[i,j]. In this example, I have used the gcc
compiler and added the optimisation flag -O3 for maximum optimisations. Again, in this case it’s much simpler to
just use the C_matrix *= depression_factor NumPy expression, but in some cases using inline C++ might
be necessary, and as you can see above, it’s very easy to do this with Weave, and the C++ code for a snippet like this
is often almost as simple as the Python code would be.

6.2 Compiled code

Compiled C code can be used in several places in Brian to get speed improvements in cases where performance is the
most important factor.

6.2.1 Weave

Weave is a SciPy module that allows the use of inlined C++ code. Brian by default doesn’t use any C++ optimisations
for maximum compatibility across platforms, but you can enable several optimised versions of Brian objects and
functions by enabling weave compilation. See Preferences for more information.

See also Vectorisation for some information on writing your own inlined C++ code using Weave.

6.2.2 C++ objects

For maximum compatibility, Brian works with pure Python only. However, as well as the optional weave opti-
misations, there are also objects can run with a pure C++ version for a considerable speedup. For this to work,
you need a copy of the gcc compiler installed (either on Linux, Mac or through cygwin on Windows) to build
them. During installation (via easy_install, pip or with python setup.py install), two objects
are compiled automatically: brian.utils.fastexp.fastexp (providing a fast, approximate exponential function) and
brian.utils.ccircular.ccircular (a circular array data structure). If the compilation fails, a warning message will be
displayed and the pure Python versions used instead.

In addition, it is possible to compile a C++ version of a more recent datastructure underlying the Synapses object, the
SpikeQueue. To compile this object, follow these instructions:

In a command prompt or shell window, go to the directory where Brian is installed. On Windows this will prob-
ably be C:\Python27\lib\site-packages\brian. Now go to the experimental/cspikequeue
folder. If you’re on Linux (and this may also work for Mac) run the command python setup.py build_ext
--inplace. If you’re on Windows you’ll need to have cygwin with gcc installed, and then you run setup.py
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build_ext --inplace -c mingw32 instead. You should see some compilation, possibly with some warnings
but no errors.

If all works OK, you should see a UserWarning when importing Brian. You can uninstall (and effectively switch
off) the use of the C++ SpikeQueue by removing the *.so file in the experimental/cspikequeue/ directory.
Repeating the steps above (i.e. recompiling the object) will re-enable the C SpikeQueue.

The same steps can also be used for compiling the ccircular or fastexp if they were not already compiled automatically
during installation, just navigate to the respective directory.

6.2.3 Automatically generated C code

There is an experimental module for automatic generation of C code, see Code generation.

6.3 Projects with multiple files or functions

Brian works with the minimal hassle if the whole of your code is in a single Python module (.py file). This is fine
when learning Brian or for quick projects, but for larger, more realistic projects with the source code separated into
multiple files, there are some small issues you need to be aware of. These issues essentially revolve around the use of
the ‘’magic” functions run(), etc. The way these functions work is to look for objects of the required type that have
been instantiated (created) in the same ‘’execution frame” as the run() function. In a small script, that is normally
just any objects that have been defined in that script. However, if you define objects in a different module, or in a
function, then the magic functions won’t be able to find them.

There are three main approaches then to splitting code over multiple files (or functions).

6.3.1 Use the Network object explicitly

The magic run() function works by creating a Network object automatically, and then running that network.
Instead of doing this automatically, you can create your own Network object. Rather than writing something like:

group1 = ...
group2 = ...
C = Connection(group1,group2)
...
run(1*second)

You do this:

group1 = ...
group2 = ...
C = Connection(group1, group2)
...
net = Network(group1, group2, C)
net.run(1*second)

In other words, you explicitly say which objects are in your network. Note that any NeuronGroup, Connection,
Monitor or function decorated with network_operation() should be included in the Network. See the
documentation for Network for more details.

This is the preferred solution for almost all cases. You may want to use either of the following two solutions if you
think your code may be used by someone else, or if you want to make it into an extension to Brian.
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6.3.2 Use the magic_return() decorator or magic_register() function

The magic_return() decorator is used as follows:

@magic_return
def f():

...
return obj

Any object returned by a function decorated by magic_return() will be considered to have been instantiated in
the execution frame that called the function. In other words, the magic functions will find that object even though it
was really instantiated in a different execution frame.

In more complicated scenarios, you may want to use the magic_register() function. For example:

def f():
...
magic_register(obj1, obj2)
return (obj1, obj2)

This does the same thing as magic_return() but can be used with multiple objects. Also, you can specify a
level (see documentation on magic_register() for more details).

6.3.3 Use derived classes

Rather than writing a function which returns an object, you could instead write a derived class of the object type. So,
suppose you wanted to have an object that emitted N equally spaced spikes, with an interval dt between them, you
could use the SpikeGeneratorGroup class as follows:

@magic_return
def equally_spaced_spike_group(N, dt):

spikes = [(0,i*dt) for i in range(N)]
return SpikeGeneratorGroup(spikes)

Or alternatively, you could derive a class from SpikeGeneratorGroup as follows:

class EquallySpacedSpikeGroup(SpikeGeneratorGroup):
def __init__(self, N, t):

spikes = [(0,i*dt) for i in range(N)]
SpikeGeneratorGroup.__init__(self, spikes)

You would use these objects in the following ways:

obj1 = equally_spaced_spike_group(100, 10*ms)
obj2 = EquallySpacedSpikeGroup(100, 10*ms)

For simple examples like the one above, there’s no particular benefit to using derived classes, but using derived classes
allows you to add methods to your derived class for example, which might be useful. For more experienced Python
programmers, or those who are thinking about making their code into an extension for Brian, this is probably the
preferred approach.

Finally, it may be useful to note that there is a protocol for one object to ‘contain’ other objects. That is, suppose you
want to have an object that can be treated as a simple NeuronGroup by the person using it, but actually instantiates
several objects (perhaps internal Connection objects). These objects need to be added to the Network object in
order for them to be run with the simulation, but the user shouldn’t need to have to know about them. To this end, for
any object added to a Network, if it has an attribute contained_objects, then any objects in that container will
also be added to the network.
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6.4 Connection matrices

A Connection object has an attribute W which is its connection matrix.

Brian’s system for connection matrices can be slightly confusing. The way it works is roughly as follows. There
are two types of connection matrix data structures, ConstructionMatrix and ConnectionMatrix. The con-
struction matrix types are used for building connectivity, and are optimised for insertion and deletion of elements, but
access is slow. The connection matrix types are used when the simulation is running, and are optimised for fast access,
but not for adding/removing or modifying elements. When a Connection object is created, it is given a construction
matrix data type, and when the network is run, this matrix is converted to its corresponding connection matrix type. As
well as this construction/connection matrix type distinction, there is also the distinction between dense/sparse/dynamic
matrices, each of which have their own construction and connection versions.

The dense matrix structure is very simple, both the construction and connection types are basically just 2D numpy
arrays.

The sparse and dynamic matrix structures are very different for construction and connection. Both the sparse and
dynamic construction matrices are essentially just the scipy.lil_matrix sparse matrix type, however we add
some slight improvements to scipy’s matrix data type to make it more efficient for our case.

The sparse and dynamic connection matrix structures are documented in more detail in the reference pages for
SparseConnectionMatrix and DynamicConnectionMatrix.

For customised run-time modifications to sparse and dense connection matrices you have two options. You can modify
the data structures directly using the information in the reference pages linked to in the paragraph above, or you can use
the methods defined in the ConnectionMatrix class, which work for dense, sparse and dynamic matrix structures,
and do not depend on implementation specific details. These methods provide element, row and column access.
The row and column access methods use either DenseConnectionVector or SparseConnectionVector
objects. The dense connection vector is just a 1D numpy array of length the size of the row/column. The sparse
connection vector is slightly more complicated (but not much), see its documentation for details. The idea is that in
most cases, both dense and sparse connection vectors can be operated on without having to know how they work, so
for example if v is a ConnectionVector then 2*v is of the same type. So for a ConnectionMatrix W, this
should work, whatever the structure of W:

W.set_row(i, 2*W.get_row(i))

Or equivalently:

W[i,:] = 2*W[i,:]

The syntax W[i,:], W[:,i] and W[i,j] is supported for integers i and j for (respectively) row, column and
element access.

6.5 Parameters

Brian includes a simple tool for keeping track of parameters. If you only need something simple, then a dict or an
empty class could be used. The point of the parameters class is that allows you to define a cascade of computed
parameters that depend on the values of other parameters, so that changing one will automatically update the others.
See the synfire chain example examples/sfc.py for a demonstration of how it can be used.

class brian.Parameters(**kwds)
A storage class for keeping track of parameters

Example usage:
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p = Parameters(
a = 5,
b = 6,
computed_parameters = ’’’
c = a + b
’’’)

print p.c
p.a = 1
print p.c

The first print statement will give 11, the second gives 7.

Details:

Call as:

p = Parameters(...)

Where the ... consists of a list of keyword / value pairs (like a dict). Keywords must not start with the
underscore _ character. Any keyword that starts with computed_ should be a string of valid Python state-
ments that compute new values based on the given ones. Whenever a non-computed value is changed, the
computed parameters are recomputed, in alphabetical order of their keyword names (so computed_a is com-
puted before computed_b for example). Non-computed values can be accessed and set via p.x, p.x=1 for
example, whereas computed values can only be accessed and not set. New parameters can be added after the
Parameters object is created, including new computed_* parameters. You can ‘derive’ a new parameters
object from a given one as follows:

p1 = Parameters(x=1)
p2 = Parameters(y=2,**p1)
print p2.x

Note that changing the value of x in p2 will not change the value of x in p1 (this is a copy operation).

6.6 Precalculated tables

One way to speed up simulations is to use precalculated tables for complicated functions. The Tabulate class
defines a table of values of the given function at regularly sampled points. The TabulateInterp class defines a
table with linear interpolation, which is much more precise. Both work with scalar and vector arguments.

class brian.Tabulate(f, xmin, xmax, n)
An object to tabulate a numerical function.

Sample use:

g=Tabulate(f,0.,1.,1000)
y=g(.5)
v=g([.1,.3])
v=g(array([.1,.3]))

Arguments of g must lie in [xmin,xmax). An IndexError is raised is arguments are above xmax, but not always
when they are below xmin (it can give weird results).

class brian.TabulateInterp(f, xmin, xmax, n)
An object to tabulate a numerical function with linear interpolation.

Sample use:
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g=TabulateInterp(f,0.,1.,1000)
y=g(.5)
v=g([.1,.3])
v=g(array([.1,.3]))

Arguments of g must lie in [xmin,xmax). An IndexError is raised is arguments are above xmax, but not always
when they are below xmin (it can give weird results).

6.7 Preferences

6.7.1 Functions

Setting and getting global preferences is done with the following functions:

brian.set_global_preferences(**kwds)
Set global preferences for Brian

Usage:

‘‘set_global_preferences(...)‘‘

where ... is a list of keyword assignments.

brian.get_global_preference(k)
Get the value of the named global preference

6.7.2 Global configuration file

If you have a module named brian_global_config anywhere on your Python path, Brian will attempt to import
it to define global preferences. For example, to automatically enable weave compilation for all your Brian projects,
create a file brian_global_config.py somewhere in the Python path with the following contents:

from brian.globalprefs import *
set_global_preferences(useweave=True)

6.7.3 Global preferences for Brian

The following global preferences have been defined:

defaultclock = Clock(dt=0.1*msecond) The default clock to use if none is provided or defined in any
enclosing scope.

useweave_linear_diffeq = False Whether to use weave C++ acceleration for the solution of linear dif-
ferential equations. Note that on some platforms, typically older ones, this is faster and on some platforms,
typically new ones, this is actually slower.

useweave = False Defines whether or not functions should use inlined compiled C code where defined. Re-
quires a compatible C++ compiler. The gcc and g++ compilers are probably the easiest option (use Cygwin on
Windows machines). See also the weavecompiler global preference.

weavecompiler = gcc Defines the compiler to use for weave compilation. On Windows machines, installing
Cygwin is the easiest way to get access to the gcc compiler.
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gcc_options = [’-ffast-math’] Defines the compiler switches passed to the gcc compiler. For gcc ver-
sions 4.2+ we recommend using -march=native. By default, the -ffast-math optimisations are turned
on - if you need IEEE guaranteed results, turn this switch off.

openmp = False Whether or not to use OpenMP pragmas in generated C code. If supported on your compiler
(gcc 4.2+) it will use multiple CPUs and can run substantially faster. However, if you are already running
several simulations in parallel this will not improve the speed and may even slow it down. In addition, for
smaller networks or for simpler neuron models the parallelisation overheads can make it take longer.

usecodegen = False Whether or not to use experimental code generation support.

usecodegenweave = False Whether or not to use C with experimental code generation support.

usecodegenstateupdate = True Whether or not to use experimental code generation support on state up-
daters.

usecodegenreset = False Whether or not to use experimental code generation support on resets. Typically
slower due to weave overheads, so usually leave this off.

usecodegenthreshold = True Whether or not to use experimental code generation support on thresholds.

usenewpropagate = False Whether or not to use experimental new C propagation functions.

usecstdp = False Whether or not to use experimental new C STDP.

brianhears_usegpu = False Whether or not to use the GPU (if available) in Brian.hears. Support is experi-
mental at the moment, and requires the PyCUDA package to be installed.

magic_useframes = True Defines whether or not the magic functions should search for objects defined only in
the calling frame or if they should find all objects defined in any frame. This should be set to False if you are
using Brian from an interactive shell like IDLE or IPython where each command has its own frame, otherwise
set it to True.

6.8 Logging

Brian uses the standard Python logging package to generate information and warnings. All messages are sent to the
logger named brian or loggers derived from this one, and you can use the standard logging functions to set options,
write the logs to files, etc. Alternatively, Brian has four simple functions to set the level of the displayed log (see
below). There are four different levels for log messages, in decreasing order of severity they are ERROR, WARN,
INFO and DEBUG. By default, Brian displays only the WARN and ERROR level messages. Some useful information
is at the INFO level, so if you are having problems with your program, setting the level to INFO may help.

brian.log_level_error()
Shows log messages only of level ERROR or higher.

brian.log_level_warn()
Shows log messages only of level WARNING or higher (including ERROR level).

brian.log_level_info()
Shows log messages only of level INFO or higher (including WARNING and ERROR levels).

brian.log_level_debug()
Shows log messages only of level DEBUG or higher (including INFO, WARNING and ERROR levels).

6.8. Logging 255



Brian Documentation, Release 1.4.1

256 Chapter 6. Advanced concepts



CHAPTER

SEVEN

EXTENDING BRIAN

TODO: Description of how to extend Brian, add new model types, and maybe at some point how to upload them to a
database, share with others, etc.

For the moment, see the documentation on Projects with multiple files or functions.
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CHAPTER

EIGHT

REFERENCE

For an overview of Brian, see the User manual section.

8.1 SciPy, NumPy and PyLab

See the following web sites:

• http://www.scipy.org/Getting_Started

• http://www.scipy.org/Documentation

• http://matplotlib.sourceforge.net/matplotlib.pylab.html

8.2 Units system

brian.have_same_dimensions(obj1, obj2)
Tests if two scalar values have the same dimensions, returns a bool.

Note that the syntax may change in later releases of Brian, with tighter integration of scalar and array valued
quantities.

brian.is_dimensionless(obj)
Tests if a scalar value is dimensionless or not, returns a bool.

Note that the syntax may change in later releases of Brian, with tighter integration of scalar and array valued
quantities.

exception brian.DimensionMismatchError(description, *dims)
Exception class for attempted operations with inconsistent dimensions

For example, 3*mvolt + 2*amp raises this exception. The purpose of this class is to help catch errors based
on incorrect units. The exception will print a representation of the dimensions of the two inconsistent objects
that were operated on. If you want to check for inconsistent units in your code, do something like:

try:
...
your code here
...

except DimensionMismatchError, inst:
...
cleanup code here, e.g.
print "Found dimension mismatch, details:", inst
...
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brian.check_units(**au)
Decorator to check units of arguments passed to a function

Sample usage:

@check_units(I=amp,R=ohm,wibble=metre,result=volt)
def getvoltage(I,R,**k):

return I*R

You don’t have to check the units of every variable in the function, and you can define what the units should be
for variables that aren’t explicitly named in the definition of the function. For example, the code above checks
that the variable wibble should be a length, so writing:

getvoltage(1*amp,1*ohm,wibble=1)

would fail, but:

getvoltage(1*amp,1*ohm,wibble=1*metre)

would pass. String arguments are not checked (e.g. getvoltage(wibble=’hello’) would pass).

The special name result is for the return value of the function.

An error in the input value raises a DimensionMismatchError, and an error in the return value raises an
AssertionError (because it is a code problem rather than a value problem).

Notes

This decorator will destroy the signature of the original function, and replace it with the signature (*args,
**kwds). Other decorators will do the same thing, and this decorator critically needs to know the signature of
the function it is acting on, so it is important that it is the first decorator to act on a function. It cannot be used
in combination with another decorator that also needs to know the signature of the function.

Typically, you shouldn’t need to use any details about the following two classes, and their implementations are subject
to change in future releases of Brian.

class brian.Quantity(value)
A number with an associated physical dimension.

In most cases, it is not necessary to create a Quantity object by hand, instead use the constant unit names
second, kilogram, etc. The details of how Quantity objects work is subject to change in future releases
of Brian, as we plan to reimplement it in a more efficient manner, more tightly integrated with numpy. The
following can be safely used:

•Quantity, this name will not change, and the usage isinstance(x,Quantity) should be safe.

•The standard unit objects, second, kilogram, etc. documented in the main documentation will not be
subject to change (as they are based on SI standardisation).

•Scalar arithmetic will work with future implementations.

class brian.Unit(value)
A physical unit

Normally, you do not need to worry about the implementation of units. They are derived from the Quantity
object with some additional information (name and string representation). You can define new units which will
be used when generating string representations of quantities simply by doing an arithmetical operation with only
units, for example:

Nm = newton * metre

Note that operations with units are slower than operations with Quantity objects, so for efficiency if you do
not need the extra information that a Unit object carries around, write 1*second in preference to second.
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8.3 Clocks

Many Brian objects store a clock object (always passed in the initialiser with the keyword clock=...). If no
clock is specified, the program uses the global default clock. When Brian is initially imported, this is the object
defaultclock, and it has a default time step of 0.1ms. In a simple script, you can override this by writing (for
example):

defaultclock.dt = 1*ms

However, there are other ways to access or redefine the default clock (see functions below).

You may wish to use multiple clocks in your program. In this case, for each object which requires one, you have
to pass a copy of its Clock object. The network run function automatically handles objects with different clocks,
updating them all at the appropriate time according to their time steps (value of dt).

Multiple clocks can be useful, for example, for defining a simulation that runs with a very small dt, but with some
computationally expensive operation running at a lower frequency.

8.3.1 The Clock class

class brian.Clock(*args, **kwds)
An object that holds the simulation time and the time step.

Initialisation arguments:

dt The time step of the simulation.

t The current time of the clock.

order If two clocks have the same time, the order of the clock is used to resolve which clock is processed
first, lower orders first.

makedefaultclock Set to True to make this clock the default clock.

The times returned by this clock are always off the form n*dt+offset for integer n and float dt and offset.
For example, for a clock with dt=10*ms, setting t=25*ms will set n=2 and offset=5*ms. For a clock that
uses true float values for t rather than underlying integers, use FloatClock (although see the caveats there).

In order to make sure that certain operations happen in the correct sequence, you can use the order attribute,
clocks with a lower order will be processed first if the time is the same. The condition for two clocks to be
considered as having the same time is abs(t1-t2)<epsilon*abs(t1), a standard test for equality of
floating point values. For ordinary clocks based on integer times, the value of epsilon is 1e-14, and for float
based clocks it is 1e-8.

The behaviour of clocks was changed in version 1.3 of Brian, if this is causing problems you might try using
FloatClock or if that doesn’t solve the problem, NaiveClock.

Methods

reinit([t=0*second ])
Reinitialises the clock time to zero (or to your specified time).

Attributes

t
dt

Current time and time step with units.

Advanced

Attributes
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end
The time at which the current simulation will end, set by the Network.run() method.

Methods

tick()
Advances the clock by one time step.

set_t(t)
set_dt(dt)
set_end(end)

Set the various parameters.

get_duration()
The time until the current simulation ends.

set_duration(duration)
Set the time until the current simulation ends.

still_running()
Returns a bool to indicate whether the current simulation is still running.

For reasons of efficiency, we recommend using the methods tick(), set_duration() and
still_running() (which bypass unit checking internally).

class brian.EventClock(*args, **kwds)
Clock that is used for events.

Works the same as a Clock except that it is never guessed as a clock to use by NeuronGroup, etc. These
clocks can be used to make multiple clock simulations without causing ambiguous clock problems.

class brian.FloatClock(*args, **kwds)
Similar to a Clock except that it uses a float value of t rather than an integer based underlying value. This
means that over time the values of t can drift slightly off the grid, and sometimes t/dt will be slightly
less than an integer value, sometimes slightly more. This can cause problems in cases where the computa-
tion int(t/dt) is performed to extract an index value, as sometimes an index will be repeated or skipped.
However, this form of clock can be used for backwards compatibility with versions of Brian before the new
integer based clock was introduced, and for more flexibility than the new version allows for. Note also that the
equality condition for this clock uses an epsilon of 1e-8 rather than 1e-14. See Clock for more details
on this. For full backwards compatibility with older versions of Brian, use NaiveClock.

class brian.NaiveClock(*args, **kwds)
Provided for backwards compatibility with older versions of Brian. Does not perform any approximate equality
tests for clocks, meaning that clock processing sequence is undpredictable. Typically, users should use Clock
or FloatClock.

class brian.RegularClock(*args, **kwds)
Deprecated. Now the same as Clock. The old Clock class is now FloatClock.

8.3.2 The default clock

brian.defaultclock
The default clock object

Note that this is only the default clock object if you haven’t redefined it with the
define_default_clock() function or the makedefaultclock=True option of a Clock ob-
ject. A safe way to get hold of the default clock is to use the functions:

•get_default_clock()

•reinit_default_clock()
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However, it is suitable for short scripts, e.g.:

defaultclock.dt = 1*ms
...

brian.define_default_clock(**kwds)
Create a new default clock

Uses the keywords of the Clock initialiser.

Sample usage:

define_default_clock(dt=1*ms)

brian.reinit_default_clock(t=0.0 * second)
Reinitialise the default clock (to zero or a specified time)

brian.get_default_clock()
Returns the default clock object.

8.4 Neuron models and groups

8.4.1 The Equations object

class brian.Equations(expr=’‘, level=0, **kwds)
Container that stores equations from which models can be created

Initialised as:

Equations(expr[,level=0[,keywords...]])

with arguments:

expr An expression, which can each be a string representing equations, an Equations objects, or a list of
strings and Equations objects. See below for details of the string format.

level Indicates how many levels back in the stack the namespace for string equations is found, so that e.g.
level=0 looks in the namespace of the function where the Equations object was created, level=1
would look in the namespace of the function that called the function where the Equations object was
created, etc. Normally you can just leave this out.

keywords Any sequence of keyword pairs key=value where the string key in the string equations will be
replaced with value which can be either a string, value or None, in the latter case a unique name will be
generated automatically (but it won’t be pretty).

Systems of equations can be defined by passing lists of Equations to a new Equations object, or by adding
Equations objects together (the usage is similar to that of a Python list).

String equations

String equations can be of any of the following forms:

1.dx/dt = f : unit (differential equation)

2.x = f : unit (equation)

3.x = y (alias)

4.x : unit (parameter)
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Here each of x and y can be any valid Python variable name, f can be any valid Python expression, and
unit should be the unit of the corresponding x. You can also include multi-line expressions by appending
a \ character at the end of each line which is continued on the next line (following the Python standard), or
comments by including a # symbol.

These forms mean:

Differential equation A differential equation with variable x which has physical units unit. The variable x
will become one of the state variables of the model.

Equation An equation defining the meaning of x can be used for building systems of complicated differential
equations.

Alias The variable x becomes equivalent to the variable y, useful for connecting two separate systems of equa-
tions together.

Parameter The variable x will have physical units unit and will be one of the state variables of the model (but
will not evolve dynamically, instead it should be set by the user).

Noise

String equations can also use the reserved term xi for a Gaussian white noise with mean 0 and variance 1.

Example usage

eqs=Equations(’’’
dv/dt=(u-v)/tau : volt
u=3*v : volt
w=v
’’’)

Details

For more details, see More on equations in the user manual.

For information on integration methods, and the StateUpdater class, see Integration.

8.4.2 The NeuronGroup object

class brian.NeuronGroup(*args, **kwds)
Group of neurons

Initialised with arguments:

N The number of neurons in the group.

model An object defining the neuron model. It can be an Equations object, a string defining an
Equations object, a StateUpdater object, or a list or tuple of Equations and strings.

threshold=None A Threshold object, a function, a scalar quantity or a string. If threshold is a
function with one argument, it will be converted to a SimpleFunThreshold, otherwise it will be a
FunThreshold. If threshold is a scalar, then a constant single valued threshold with that value will
be used. In this case, the variable to apply the threshold to will be guessed. If there is only one variable,
or if you have a variable named one of V, Vm, v or vm it will be used. If threshold is a string then
the appropriate threshold type will be chosen, for example you could do threshold=’V>10*mV’. The
string must be a one line string.

reset=None A Reset object, a function, a scalar quantity or a string. If it’s a function, it will be converted to
a FunReset object. If it’s a scalar, then a constant single valued reset with that value will be used. In this
case, the variable to apply the reset to will be guessed. If there is only one variable, or if you have a variable
named one of V, Vm, v or vm it will be used. If reset is a string it should be a series of expressions which

264 Chapter 8. Reference



Brian Documentation, Release 1.4.1

are evaluated for each neuron that is resetting. The series of expressions can be multiline or separated by
a semicolon. For example, reset=‘Vt+=5*mV; V=Vt’. Statements involving if constructions will
often not work because the code is automatically vectorised. For such constructions, use a function instead
of a string.

refractory=0*ms, min_refractory, max_refractory A refractory period, used in combination
with the reset value if it is a scalar. For constant resets only, you can specify refractory as an array
of length the number of elements in the group, or as a string, giving the name of a state variable in the
group. In the case of these variable refractory periods, you should specify min_refractory (optional)
and max_refractory (required).

level=0 See Equations for details.

clock A clock to use for scheduling this NeuronGroup, if omitted the default clock will be used.

order=1 The order to use for nonlinear differential equation solvers. TODO: more details.

implicit=False Whether to use an implicit method for solving the differential equations. TODO: more
details.

max_delay=0*ms The maximum allowable delay (larger values use more memory). This doesn’t usually
need to be specified because Connections will update it.

compile=False Whether or not to attempt to compile the differential equation solvers (into Python code).
Typically, for best performance, both compile and freeze should be set to True for nonlinear differ-
ential equations.

freeze=False If True, parameters are replaced by their values at the time of initialization.

method=None If not None, the integration method is forced. Possible values are linear, nonlinear, Euler,
exponential_Euler (overrides implicit and order keywords).

unit_checking=True Set to False to bypass unit-checking.

Methods

subgroup(N)
Returns the next sequential subgroup of N neurons. See the section on subgroups below.

state(var)
Returns the array of values for state variable var, with length the number of neurons in the group.

rest()
Sets the neuron state values at rest for their differential equations.

The following usages are also possible for a group G:

G[i:j] Returns the subgroup of neurons from i to j.

len(G) Returns the number of neurons in G.

G.x For any valid Python variable name x corresponding to a state variable of the the NeuronGroup,
this returns the array of values for the state variable x, as for the state() method above. Writing
G.x = arr for arr a TimedArray will set the values of variable x to be arr(t) at time t. See
TimedArraySetter for details.

Subgroups

A subgroup is a view on a group. It isn’t a new group, it’s just a convenient way of referring to a subset of the
neurons in an already defined group. The subset has to be a continguous set of neurons. They can be overlapping
if defined with the slice notation, or consecutive if defined with the subgroup() method. Subgroups can
themselves be subgrouped. Subgroups can be used in almost all situations exactly as if they were groups, except
that they cannot be passed to the Network object.
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Details

TODO: details of other methods and properties for people wanting to write extensions?

8.4.3 Resets

Reset objects are called each network update step to reset specified state variables of neurons that have fired.

class brian.Reset(resetvalue=0.0 * volt, state=0)
Resets specified state variable to a fixed value

Initialise as:

R = Reset([resetvalue=0*mvolt[, state=0]])

with arguments:

resetvalue The value to reset to.

state The name or number of the state variable to reset.

This will reset all of the neurons that have just spiked. The given state variable of the neuron group will be set
to value resetvalue.

class brian.StringReset(expr, level=0)
Reset defined by a string

Initialised with arguments:

expr The string expression used to reset. This can include multiple lines or statements separated by a semi-
colon. For example, ’V=-70*mV’ or ’V=-70*mV; Vt+=10*mV’. Some standard functions are pro-
vided, see below.

level How many levels up in the calling sequence to look for names in the namespace. Usually 0 for user
code.

Standard functions for expressions:

rand() A uniform random number between 0 and 1.

randn() A Gaussian random number with mean 0 and standard deviation 1.

For example, these could be used to implement an adaptive model with random reset noise with the following
string:

E -= 1*mV
V = Vr+rand()*5*mV

class brian.VariableReset(resetvaluestate=1, state=0)
Resets specified state variable to the value of another state variable

Initialised with arguments:

resetvaluestate The state variable which contains the value to reset to.

state The name or number of the state variable to reset.

This will reset all of the neurons that have just spiked. The given state variable of the neuron group will be set
to the value of the state variable resetvaluestate.

class brian.Refractoriness(*args, **kwds)
Holds the state variable at the reset value for a fixed time after a spike.

Initialised with arguments:
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resetvalue The value to reset and hold to.

period The length of time to hold at the reset value. If using variable refractoriness, this is the maximum
period.

state The name or number of the state variable to reset and hold.

class brian.SimpleCustomRefractoriness(*args, **kwds)
Holds the state variable at the custom reset value for a fixed time after a spike.

Initialised as:

SimpleCustomRefractoriness(resetfunc[,period=5*ms[,state=0]])

with arguments:

resetfun The custom reset function resetfun(P, spikes) for P a NeuronGroup and spikes a list
of neurons that fired spikes.

period The length of time to hold at the reset value.

state The name or number of the state variable to reset and hold, it is your responsibility to check that this
corresponds to the custom reset function.

The assumption is that resetfun(P, spikes) will reset the state variable state on the group P for the
spikes with indices spikes. The values assigned by the custom reset function are stored by this object, and
they are clamped at these values for period. This object does not introduce refractoriness for more than the
one specified variable state or for spike indices other than those in the variable spikes passed to the custom
reset function.

class brian.CustomRefractoriness(*args, **kwds)
Holds the state variable at the custom reset value for a fixed time after a spike.

Initialised as:

CustomRefractoriness(resetfunc[,period=5*ms[,refracfunc=resetfunc]])

with arguments:

resetfunc The custom reset function resetfunc(P, spikes) for P a NeuronGroup and spikes a
list of neurons that fired spikes.

refracfunc The custom refractoriness function refracfunc(P, indices) for P a NeuronGroup
and indices a list of neurons that are in their refractory periods. In some cases, you can choose not to
specify this, and it will use the reset function.

period The length of time to hold at the reset value.

class brian.FunReset(resetfun)
A reset with a user-defined function.

Initialised as:

FunReset(resetfun)

with argument:

resetfun A function f(G,spikes) where G is the NeuronGroup and spikes is an array of the indexes
of the neurons to be reset.

class brian.NoReset
Absence of reset mechanism.

Initialised as:
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NoReset()

8.4.4 Thresholds

A threshold mechanism checks which neurons have fired a spike.

class brian.Threshold(threshold=1.0 * mvolt, state=0)
All neurons with a specified state variable above a fixed value fire a spike.

Initialised as:

Threshold([threshold=1*mV[,state=0])

with arguments:

threshold The value above which a neuron will fire.

state The state variable which is checked.

Compilation

Note that if the global variable useweave is set to True then this function will use a C++ accelerated version
which runs approximately 3x faster.

class brian.StringThreshold(expr, level=0)
A threshold specified by a string expression.

Initialised with arguments:

expr The expression used to test whether a neuron has fired a spike. Should be a single statement that returns
a value. For example, ’V>50*mV’ or ’V>Vt’.

level How many levels up in the calling sequence to look for names in the namespace. Usually 0 for user
code.

class brian.VariableThreshold(threshold_state=1, state=0)
Threshold mechanism where one state variable is compared to another.

Initialised as:

VariableThreshold([threshold_state=1[,state=0]])

with arguments:

threshold_state The state holding the lower bound for spiking.

state The state that is checked.

If x is the value of state variable threshold_state on neuron i and y is the value of state variable state
on neuron i then neuron i will fire if y>x.

Typically, using this class is more time efficient than writing a custom thresholding operation.

Compilation

Note that if the global variable useweave is set to True then this function will use a C++ accelerated version.

class brian.EmpiricalThreshold(*args, **kwds)
Empirical threshold, e.g. for Hodgkin-Huxley models.

In empirical models such as the Hodgkin-Huxley method, after a spike neurons are not instantaneously reset,
but reset themselves as part of the dynamical equations defining their behaviour. This class can be used to
model that. It is a simple threshold mechanism that checks e.g. V>=Vt but it only does so for neurons that
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haven’t recently fired (giving the dynamical equations time to reset the values naturally). It should be used in
conjunction with the NoReset object.

Initialised as:

EmpiricalThreshold([threshold=1*mV[,refractory=1*ms[,state=0[,clock]]]])

with arguments:

threshold The lower bound for the state variable to induce a spike.

refractory The time to wait after a spike before checking for spikes again.

state The name or number of the state variable to check.

clock If this object is being used for a NeuronGroup which doesn’t use the default clock, you need to
specify its clock here.

class brian.SimpleFunThreshold(thresholdfun, state=0)
Threshold mechanism with a user-specified function.

Initialised as:

FunThreshold(thresholdfun[,state=0])

with arguments:

thresholdfun A function with one argument, the array of values for the specified state variable. For effi-
ciency, this is a numpy array, and there is no unit checking.

state The name or number of the state variable to pass to the threshold function.

Sample usage:

FunThreshold(lambda V:V>=Vt,state=’V’)

class brian.FunThreshold(thresholdfun)
Threshold mechanism with a user-specified function.

Initialised as:

FunThreshold(thresholdfun)

where thresholdfun is a function with one argument, the 2d state value array, where each row is an array
of values for one state, of length N for N the number of neurons in the group. For efficiency, data are numpy
arrays and there is no unit checking.

Note: if you only need to consider one state variable, use the SimpleFunThreshold object instead.

class brian.NoThreshold
No thresholding mechanism.

Initialised as:

NoThreshold()

8.5 Integration

See Numerical integration for an overview.
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8.5.1 StateUpdaters

Typically you don’t need to worry about StateUpdater objects because they are automatically created from the
differential equations defining your model. TODO: more details about this.

class brian.LinearStateUpdater(M, B=None, clock=None)
A linear model with dynamics dX/dt = M(X-B) or dX/dt = MX.

Initialised as:

LinearStateUpdater(M[,B[,clock]])

with arguments:

M Matrix defining the differential equation.

B Optional linear term in the differential equation.

clock Optional clock.

Computes an update matrix A=exp(M dt) for the linear system, and performs the update step.

TODO: more mathematical details?

class brian.LazyStateUpdater(numstatevariables=1, clock=None)
A StateUpdater that does nothing.

Initialised as:

LazyStateUpdater([numstatevariables=1[,clock]])

with arguments:

numstatevariables The number of state variables to create.

clock An optional clock to determine when it updates, although the update function does nothing so...

TODO: write docs for these StateUpdaters:

• StateUpdater, LinearStateUpdater more details, NonlinearStateUpdater, NonlinearStateUpdater2, Exponen-
tialEulerStateUpdater, NonlinearStateUpdaterRK2, NonlinearStateUpdaterBE, SynapticNoise

8.6 Standard Groups

Some standard types of NeuronGroup have already been defined. PoissonGroup and PoissonInput to
generate spikes with Poisson statistics, PulsePacket to generate pulse packets with specified parameters, and
SpikeGeneratorGroup to generate spikes which fire at prespecified times.

class brian.PoissonGroup(N, rates=0.0 * hertz, clock=None)
A group that generates independent Poisson spike trains.

Initialised as:

PoissonGroup(N,rates[,clock])

with arguments:

N The number of neurons in the group

rates A scalar, array or function returning a scalar or array. The array should have the same length as the
number of neurons in the group. The function should take one argument t the current simulation time.

clock The clock which the group will update with, do not specify to use the default clock.
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class brian.PoissonInput(target, N=None, rate=None, weight=None, state=None, jitter=None, relia-
bility=None, copies=1, record=False, freeze=False)

Adds a Poisson input to a NeuronGroup. Allows to efficiently simulate a large number of independent Poisson
inputs to a NeuronGroup variable, without simulating every synapse individually. The synaptic events are
generated randomly during the simulation and are not preloaded and stored in memory (unless record=True is
used). All the inputs must target the same variable, have the same frequency and same synaptic weight. You can
use as many PoissonInput objects as you want, even targetting a same NeuronGroup. There is the possibility
to consider time jitter in the presynaptic spikes, and synaptic unreliability. The inputs can also be recorded if
needed. Finally, all neurons from the NeuronGroup receive independent realizations of Poisson spike trains,
except if the keyword freeze=True is used, in which case all neurons receive the same Poisson input.

Initialised as:

PoissonInput(target[, N][, rate][, weight][, state][, jitter][, reliability][, copies][, record][, freeze])

with arguments:

target The target NeuronGroup

N The number of independent Poisson inputs

rate The rate of each Poisson process

weight The synaptic weight

state The name or the index of the synaptic variable of the NeuronGroup

jitter is None by default. There is the possibility to consider copies presynaptic spikes at each Pois-
son event, randomly shifted according to an exponential law with parameter jitter=taujitter (in
second).

reliability is None by default. There is the possibility to consider copies presynaptic spikes at each
Poisson event, where each of these spikes is unreliable, i.e. it occurs with probability jitter=alpha
(between 0 and 1).

copies The number of copies of each Poisson event. This is identical to weight=copies*w, except if
jitter or reliability are specified.

record True if the input has to be recorded. In this case, the recorded events are stored in the
recorded_events attribute, as a list of pairs (i,t) where i is the neuron index and t is the event
time.

freeze True if the input must be the same for all neurons of the NeuronGroup

class brian.PulsePacket(*args, **kwds)
Fires a Gaussian distributed packet of n spikes with given spread

Initialised as:

PulsePacket(t,n,sigma[,clock])

with arguments:

t The mean firing time

n The number of spikes in the packet

sigma The standard deviation of the firing times.

clock The clock to use (omit to use default or local clock)

Methods

This class is derived from SpikeGeneratorGroup and has all its methods as well as one additional method:
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generate(t, n, sigma)
Change the parameters and/or generate a new pulse packet.

class brian.SpikeGeneratorGroup(N, spiketimes, clock=None, period=None, sort=True,
gather=None)

Emits spikes at given times

Initialised as:

SpikeGeneratorGroup(N,spiketimes[,clock[,period]])

with arguments:

N The number of neurons in the group.

spiketimes An object specifying which neurons should fire and when. It can be a container such as a
list, containing tuples (i,t) meaning neuron i fires at time t, or a callable object which returns such
a container (which allows you to use generator objects even though this is slower, see below). i can be an
integer or an array (list of neurons that spike at the same time). If spiketimes is not a list or tuple, the
pairs (i,t) need to be sorted in time. You can also pass a numpy array spiketimes where the first
column of the array is the neuron indices, and the second column is the times in seconds. Alternatively
you can pass a tuple with two arrays, the first one being the neuron indices and the second one times.
WARNING: units are not checked in this case, the time array should be in seconds.

clock An optional clock to update with (omit to use the default clock).

period Optionally makes the spikes recur periodically with the given period. Note that iterator objects cannot
be used as the spikelist with a period as they cannot be reinitialised.

gather=False Set to True if you want to gather spike events that fall in the same timestep. (Deprecated
since Brian 1.3.1)

sort=True Set to False if your spike events are already sorted.

Has an attribute:

spiketimes This can be used to reset the list of spike times, however the values of N, clock and period
cannot be changed.

Sample usages

The simplest usage would be a list of pairs (i,t):

spiketimes = [(0,1*ms), (1,2*ms)]
SpikeGeneratorGroup(N,spiketimes)

A more complicated example would be to pass a generator:

import random
def nextspike():

nexttime = random.uniform(0*ms,10*ms)
while True:

yield (random.randint(0,9),nexttime)
nexttime = nexttime + random.uniform(0*ms,10*ms)

P = SpikeGeneratorGroup(10,nextspike())

This would give a neuron group P with 10 neurons, where a random one of the neurons fires at an average rate
of one every 5ms. Please note that as of 1.3.1, this behavior is preserved but will run slower than initializing
with arrays, or lists.

Notes

Note that if a neuron fires more than one spike in a given interval dt, additional spikes will be discarded. A
warning will be issued if this is detected.
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Also, if you want to use a SpikeGeneratorGroup with many spikes and/or neurons, please use an initialization
with arrays.

Also note that if you pass a generator, then reinitialising the group will not have the expected effect because a
generator object cannot be reinitialised. Instead, you should pass a callable object which returns a generator. In
the example above, that would be done by calling:

P = SpikeGeneratorGroup(10,nextspike)

Whenever P is reinitialised, it will call nextspike() to create the required spike container.

class brian.MultipleSpikeGeneratorGroup(spiketimes, clock=None, period=None)
Emits spikes at given times

Warning: This function has been deprecated after Brian 1.3.1 and will be removed in a future release. Use
SpikeGeneratorGroup instead. To convert spiketimes for MultipleSpikeGeneratorGroup
into a form suitable for SpikeGeneratorGroup, do:

N = len(spiketimes)
spiketimes = [(i, t) for i in xrange(N) for t in spiketimes[i]]

Initialised as:

MultipleSpikeGeneratorGroup(spiketimes[,clock[,period]])

with arguments:

spiketimes a list of spike time containers, one for each neuron in the group, although note that elements of
spiketimes can also be callable objects which return spike time containers if you want to be able to
reinitialise (see below). At it’s simplest, spiketimes could be a list of lists, where spiketimes[0]
contains the firing times for neuron 0, spiketimes[1] for neuron 1, etc. But, any iterable object can
be passed, so spiketimes[0] could be a generator for example. Each spike time container should be
sorted in time. If the containers are numpy arrays units will not be checked (times should be in seconds).

clock A clock, if omitted the default clock will be used.

period Optionally makes the spikes recur periodically with the given period. Note that iterator objects cannot
be used as the spikelist with a period as they cannot be reinitialised.

Note that if two or more spike times fall within the same dt, spikes will stack up and come out one per dt until
the stack is exhausted. A warning will be generated if this happens.

Also note that if you pass a generator, then reinitialising the group will not have the expected effect because a
generator object cannot be reinitialised. Instead, you should pass a callable object which returns a generator,
this will be called each time the object is reinitialised by calling the reinit() method.

Sample usage:

spiketimes = [[1*msecond, 2*msecond]]
P = MultipleSpikeGeneratorGroup(spiketimes)

8.7 Connections

The best way to understand the concept of a Connection in Brian is to work through Tutorial 2: Connections.
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class brian.Connection(source, target, state=0, delay=0.0 * second, modulation=None, struc-
ture=’sparse’, weight=None, sparseness=None, max_delay=5.0 * msecond,
**kwds)

Mechanism for propagating spikes from one group to another

A Connection object declares that when spikes in a source group are generated, certain neurons in the target
group should have a value added to specific states. See Tutorial 2: Connections to understand this better.

With arguments:

source The group from which spikes will be propagated.

target The group to which spikes will be propagated.

state The state variable name or number that spikes will be propagated to in the target group.

delay The delay between a spike being generated at the source and received at the target. Depending on the
type of delay it has different effects. If delay is a scalar value, then the connection will be initialised
with all neurons having that delay. For very long delays, this may raise an error. If delay=True then
the connection will be initialised as a DelayConnection, allowing heterogeneous delays (a different
delay for each synapse). delay can also be a pair (min,max) or a function of one or two variables, in
both cases it will be initialised as a DelayConnection, see the documentation for that class for details.
Note that in these cases, initialisation of delays will only have the intended effect if used with the weight
and sparseness arguments below.

max_delay If you are using a connection with heterogeneous delays, specify this to set the maximum allowed
delay (smaller values use less memory). The default is 5ms.

modulation The state variable name from the source group that scales the synaptic weights (for short-term
synaptic plasticity).

structure Data structure: sparse (default), dense or dynamic. See below for more information on
structures.

weight If specified, the connection matrix will be initialised with values specified by weight, which can be
any of the values allowed in the methods connect*‘ below.

sparseness If weight is specified and sparseness is not, a full connection is assumed, otherwise ran-
dom connectivity with this level of sparseness is assumed.

Methods

connect_random(P,Q,p[,weight=1[,fixed=False[,seed=None]]]) Connects each neuron
in P to each neuron in Q with independent probability p and weight weight (this is the amount that
gets added to the target state variable). If fixed is True, then the number of presynaptic neurons per
neuron is constant. If seed is given, it is used as the seed to the random number generators, for exactly
repeatable results.

connect_full(P,Q[,weight=1]) Connect every neuron in P to every neuron in Q with the given
weight.

connect_one_to_one(P,Q) If P and Q have the same number of neurons then neuron i in P will be
connected to neuron i in Q with weight 1.

connect(P,Q,W) You can specify a matrix of weights directly (can be in any format recognised by NumPy).
Note that due to internal implementation details, passing a full matrix rather than a sparse one may slow
down your code (because zeros will be propagated as well as nonzero values). WARNING: No unit
checking is done at the moment. For a more efficient low-level method see connect_from_sparse().

Additionally, you can directly access the matrix of weights by writing:
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C = Connection(P,Q)
print C[i,j]
C[i,j] = ...

Where here i is the source neuron and j is the target neuron. Note: if C[i,j] should be zero, it is more
efficient not to write C[i,j]=0, if you write this then when neuron i fires all the targets will have the value 0
added to them rather than just the nonzero ones. WARNING: No unit checking is currently done if you use this
method. Take care to set the right units.

Connection matrix structures

Brian currently features three types of connection matrix structures, each of which is suited for different situa-
tions. Brian has two stages of connection matrix. The first is the construction stage, used for building a weight
matrix. This stage is optimised for the construction of matrices, with lots of features, but would be slow for
runtime behaviour. Consequently, the second stage is the connection stage, used when Brian is being run. The
connection stage is optimised for run time behaviour, but many features which are useful for construction are
absent (e.g. the ability to add or remove synapses). Conversion between construction and connection stages is
done by the compress() method of Connection which is called automatically when it is used for the first
time.

The structures are:

dense A dense matrix. Allows runtime modification of all values. If connectivity is close to being dense this
is probably the most efficient, but in most cases it is less efficient. In addition, a dense connection matrix
will often do the wrong thing if using STDP. Because a synapse will be considered to exist but with weight
0, STDP will be able to create new synapses where there were previously none. Memory requirements are
8NM bytes where (N,M) are the dimensions. (A double float value uses 8 bytes.)

sparse A sparse matrix. See SparseConnectionMatrix for details on implementation. This class fea-
tures very fast row access, and slower column access if the column_access=True keyword is specified
(making it suitable for learning algorithms such as STDP which require this). Memory requirements are
12 bytes per nonzero entry for row access only, or 20 bytes per nonzero entry if column access is specified.
Synapses cannot be created or deleted at runtime with this class (although weights can be set to zero).

dynamic A sparse matrix which allows runtime insertion and removal of synapses. See
DynamicConnectionMatrix for implementation details. This class features row and column
access. The row access is slower than for sparse so this class should only be used when insertion and
removal of synapses is crucial. Memory requirements are 24 bytes per nonzero entry. However, note that
more memory than this may be required because memory is allocated using a dynamic array which grows
by doubling its size when it runs out. If you know the maximum number of nonzero entries you will have
in advance, specify the nnzmax keyword to set the initial size of the array.

Low level methods

connect_from_sparse(W, delay=None, column_access=True)
Bypasses the usual Brian mechanisms for constructing and compressing matrices, and allows
you to directly set the weight (and optionally delay) matrices from scipy sparse matrix objects.
This can be more memory efficient, because the default sparse matrix used for construction is
scipy.sparse.lil_matrix which is very memory inefficient.

Arguments:

W The weight matrix

delay Optional delay matrix if you are using heterogeneous delays.

column_access=True Set to False to save memory if you are not using STDP.

Warning: This is a low-level method that bypasses the usual checks on the data. In particular, make
sure that if you pass a weight and delay matrix, that they have the same structure.
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Advanced information

The following methods are also defined and used internally, if you are writing your own derived connection
class you need to understand what these do.

propagate(spikes) Action to take when source neurons with indices in spikes fired.

do_propagate() The method called by the Network update() step, typically just propagates the spikes
obtained by calling the get_spikes method of the source NeuronGroup.

class brian.DelayConnection(source, target, state=0, modulation=None, structure=’sparse’,
weight=None, sparseness=None, delay=None, max_delay=5.0 *
msecond, **kwds)

Connection which implements heterogeneous postsynaptic delays

Initialised as for a Connection, but with the additional keyword:

max_delay Specifies the maximum delay time for any neuron. Note, the smaller you make this the less
memory will be used.

Overrides the following attribute of Connection:

delay
A matrix of delays. This array can be changed during a run, but at no point should it be greater than
max_delay.

In addition, the methods connect, connect_random, connect_full, and connect_one_to_one
have a new keyword delay=... for setting the initial values of the delays, where delay can be one of:

•A float, all delays will be set to this value

•A pair (min, max), delays will be uniform between these two values.

•A function of no arguments, will be called for each nonzero entry in the weight matrix.

•A function of two argument (i,j) will be called for each nonzero entry in the weight matrix.

•A matrix of an appropriate type (e.g. ndarray or lil_matrix).

Finally, there is a method:

set_delays(source, target, delay) Where delay must be of one of the types above.

Notes

This class implements post-synaptic delays. This means that the spike is propagated immediately from the
presynaptic neuron with the synaptic weight at the time of the spike, but arrives at the postsynaptic neuron with
the given delay. At the moment, Brian only provides support for presynaptic delays if they are homogeneous,
using the delay keyword of a standard Connection.

Implementation

DelayConnection stores an array of size (n,m) where n is max_delay/dt for dt of the target
NeuronGroup‘s clock, and m is the number of neurons in the target. This array can potentially be quite large.
Each row in this array represents the array that should be added to the target state variable at some particular
future time. Which row corresponds to which time is tracked using a circular indexing scheme.

When a spike from neuron i in the source is encountered, the delay time of neuron i is looked up, the row
corresponding to the current time plus that delay time is found using the circular indexing scheme, and then the
spike is propagated to that row as for a standard connection (although this won’t be propagated to the target until
a later time).

Warning
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If you are using a dynamic connection matrix, it is your responsibility to ensure that the nonzero entries of the
weight matrix and the delay matrix exactly coincide. This is not an issue for sparse or dense matrices.

class brian.IdentityConnection(*args, **kwds)
A Connection between two groups of the same size, where neuron i in the source group is connected to
neuron i in the target group.

Initialised with arguments:

source, target The source and target NeuronGroup objects.

state The target state variable.

weight The weight of the synapse, must be a scalar.

delay Only homogeneous delays are allowed.

The benefit of this class is that it has no storage requirements and is optimised for this special case.

8.7.1 Connection matrix types

class brian.ConnectionMatrix
Base class for connection matrix objects

Connection matrix objects support a subset of the following methods:

get_row(i), get_col(i) Returns row/col i as a DenseConnectionVector or
SparseConnectionVector as appropriate for the class.

set_row(i, val), set_col(i, val) Sets row/col with an array, DenseConnectionVector or
SparseConnectionVector (if supported).

get_element(i, j), set_element(i, j, val) Gets or sets a single value.

get_rows(rows) Returns a list of rows, should be implemented without Python function calls for efficiency
if possible.

get_cols(cols) Returns a list of cols, should be implemented without Python function calls for efficiency
if possible.

insert(i,j,x), remove(i,j) For sparse connection matrices which support it, insert a new entry or
remove an existing one.

getnnz() Return the number of nonzero entries.

todense() Return the matrix as a dense array.

The __getitem__ and __setitem__ methods are implemented by default, and automatically select the
appropriate methods from the above in the cases where the item to be got or set is of the form :, i,:, :,j or
i,j.

class brian.DenseConnectionMatrix(val, **kwds)
Dense connection matrix

See documentation for ConnectionMatrix for details on connection matrix types.

This matrix implements a dense connection matrix. It is just a numpy array. The get_row and get_col
methods return DenseConnectionVector‘ objects.

class brian.SparseConnectionMatrix(val, column_access=True, use_minimal_indices=False,
**kwds)

Sparse connection matrix

See documentation for ConnectionMatrix for details on connection matrix types.
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This class implements a sparse matrix with a fixed number of nonzero entries. Row access is very fast, and if
the column_access keyword is True then column access is also supported (but is not as fast as row access).
If the use_minimal_indices keyword is True then the neuron and synapse indices will use the smallest
possible integer type (16 bits for neuron indices if the number of neurons is less than 2**16, otherwise 32 bits).
Otherwise, it will use the word size for the CPU architecture (32 or 64 bits).

The matrix should be initialised with a scipy sparse matrix.

The get_row and get_col methods return SparseConnectionVector objects. In addition to the usual
slicing operations supported, M[:]=val is supported, where val must be a scalar or an array of length nnz.

Implementation details:

The values are stored in an array alldata of length nnz (number of nonzero entries). The slice
alldata[rowind[i]:rowind[i+1]] gives the values for row i. These slices are stored in the list
rowdata so that rowdata[i] is the data for row i. The array rowj[i] gives the corresponding col-
umn j indices. For row access, the memory requirements are 12 bytes per entry (8 bytes for the float value, and
4 bytes for the column indices). The array allj of length nnz gives the column j coordinates for each element
in alldata (the elements of rowj are slices of this array so no extra memory is used).

If column access is being used, then in addition to the above there are lists coli and coldataindices.
For column j, the array coli[j] gives the row indices for the data values in column j, while
coldataindices[j] gives the indices in the array alldata for the values in column j. Column ac-
cess therefore involves a copy operation rather than a slice operation. Column access increases the memory
requirements to 20 bytes per entry (4 extra bytes for the row indices and 4 extra bytes for the data indices).

TODO: update size numbers when use_minimal_indices=True for different architectures.

class brian.DynamicConnectionMatrix(val, nnzmax=None, dynamic_array_const=2, **kwds)
Dynamic (sparse) connection matrix

See documentation for ConnectionMatrix for details on connection matrix types.

This class implements a sparse matrix with a variable number of nonzero entries. Row access and column access
are provided, but are not as fast as for SparseConnectionMatrix.

The matrix should be initialised with a scipy sparse matrix.

The get_row and get_col methods return SparseConnectionVector objects. In addition to the usual
slicing operations supported, M[:]=val is supported, where val must be a scalar or an array of length nnz.

Implementation details

The values are stored in an array alldata of length nnzmax (maximum number of nonzero entries). This is
a dynamic array, see:

http://en.wikipedia.org/wiki/Dynamic_array

You can set the resizing constant with the argument dynamic_array_const. Normally the default value 2
is fine but if memory is a worry it could be made smaller.

Rows and column point in to this data array, and the list rowj consists of an array of column indices for each
row, with coli containing arrays of row indices for each column. Similarly, rowdataind and coldataind
consist of arrays of pointers to the indices in the alldata array.

8.7.2 Construction matrix types

class brian.ConstructionMatrix
Base class for construction matrices
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A construction matrix is used to initialise and build connection matrices. A ConstructionMatrix
class has to implement a method connection_matrix(*args, **kwds) which returns a
ConnectionMatrix object of the appropriate type.

class brian.DenseConstructionMatrix(val, **kwds)
Dense construction matrix. Essentially just numpy.ndarray.

The connection_matrix method returns a DenseConnectionMatrix object.

The __setitem__ method is overloaded so that you can set values with a sparse matrix.

class brian.SparseConstructionMatrix(arg, **kwds)
SparseConstructionMatrix is converted to SparseConnectionMatrix.

class brian.DynamicConstructionMatrix(arg, **kwds)
DynamicConstructionMatrix is converted to DynamicConnectionMatrix.

8.7.3 Connection vector types

class brian.ConnectionVector
Base class for connection vectors, just used for defining the interface

ConnectionVector objects are returned by ConnectionMatrix objects when they retrieve rows or columns. At the
moment, there are two choices, sparse or dense.

This class has no real function at the moment.

class brian.DenseConnectionVector
Just a numpy array.

class brian.SparseConnectionVector
Sparse vector class

A sparse vector is typically a row or column of a sparse matrix. This class can be treated in many cases as if it
were just a vector without worrying about the fact that it is sparse. For example, if you write 2*v it will evaluate
to a new sparse vector. There is one aspect of the semantics which is potentially confusing. In a binary operation
with a dense vector such as sv+dv where sv is sparse and dv is dense, the result will be a sparse vector with
zeros where sv has zeros, the potentially nonzero elements of dv where sv has no entry will be simply ignored.
It is for this reason that it is a SparseConnectionVector and not a general SparseVector, because
these semantics make sense for rows and columns of connection matrices but not in general.

Implementation details:

The underlying numpy array contains the values, the attribute n is the length of the sparse vector, and ind is an
array of the indices of the nonzero elements.

8.8 Plasticity

8.8.1 Spike timing dependent plasticity (STDP)

class brian.STDP(C, eqs, pre, post, wmin=0, wmax=inf, level=0, clock=None, delay_pre=None, de-
lay_post=None)

Spike-timing-dependent plasticity

Initialised with arguments:

C Connection object to apply STDP to.

eqs Differential equations (with units)
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pre Python code for presynaptic spikes, use the reserved symbol w to refer to the synaptic weight.

post Python code for postsynaptic spikes, use the reserved symbol w to refer to the synaptic weight.

wmin Minimum weight (default 0), weights are restricted to be within this value and wmax.

wmax Maximum weight (default unlimited), weights are restricted to be within wmin and this value.

delay_pre Presynaptic delay

delay_post Postsynaptic delay (backward propagating spike)

The STDP object works by specifying a set of differential equations associated to each synapse (eqs) and two
rules to specify what should happen when a presynaptic neuron fires (pre) and when a postsynaptic neuron fires
(post). The equations should be standard set of equations in the usual string format. The pre and post rules
should be a sequence of statements to be executed triggered on pre- and post-synaptic spikes. The sequence of
statements can be separated by a ; or by using a multiline string. The reserved symbol w can be used to refer to
the synaptic weight of the associated synapse.

This framework allows you to implement most STDP rules. Specifying differential equations and pre- and post-
synaptic event code allows for a much more efficient implementation than specifying, for example, the spike
pair weight modification function, but does unfortunately require transforming the definition into this form.

There is one restriction on the equations that can be implemented in this system, they need to be separable into
independent pre- and post-synaptic systems (this is done automatically). In this way, synaptic variables and
updates can be stored per neuron rather than per synapse.

Example

eqs_stdp = """
dA_pre/dt = -A_pre/tau_pre : 1
dA_post/dt = -A_post/tau_post : 1
"""
stdp = STDP(synapses, eqs=eqs_stdp, pre=’A_pre+=delta_A_pre; w+=A_post’,

post=’A_post+=delta_A_post; w+=A_pre’, wmax=gmax)

STDP variables

You can access the pre- and post-synaptic variables as follows:

stdp = STDP(...)
print stdp.A_pre

Alternatively, you can access the group of pre/post-synaptic variables as:

stdp.pre_group
stdp.post_group

These latter attributes can be passed to a StateMonitor to record their activity, for example. However, note
that in the case of STDP acting on a connection with heterogeneous delays, the recent values of these variables
are automatically monitored and these can be accesses as follows:

stdp.G_pre_monitors[’A_pre’]
stdp.G_post_monitors[’A_post’]

Technical details

The equations are split into two groups, pre and post. Two groups are created to carry these variables and to
update them (these are implemented as NeuronGroup objects). As well as propagating spikes from the source
and target of C via C, spikes are also propagated to the respective groups created. At spike propagation time the
weight values are updated.
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class brian.ExponentialSTDP(C, taup, taum, Ap, Am, interactions=’all’, wmin=0, wmax=None, up-
date=’additive’, delay_pre=None, delay_post=None, clock=None)

Exponential STDP.

Initialised with the following arguments:

taup, taum, Ap, Am Synaptic weight change (relative to the maximum weight wmax):

f(s) = Ap*exp(-s/taup) if s >0
f(s) = Am*exp(s/taum) if s <0

interactions

• ‘all’: contributions from all pre-post pairs are added

• ‘nearest’: only nearest-neighbour pairs are considered

• ‘nearest_pre’: nearest presynaptic spike, all postsynaptic spikes

• ‘nearest_post’: nearest postsynaptic spike, all presynaptic spikes

wmin=0 minimum synaptic weight

wmax maximum synaptic weight

update

• ‘additive’: modifications are additive (independent of synaptic weight) (or “hard bounds”)

• ‘multiplicative’: modifications are multiplicative (proportional to w) (or “soft bounds”)

• ‘mixed’: depression is multiplicative, potentiation is additive

See documentation for STDP for more details.

8.8.2 Short term plasticity (STP)

class brian.STP(C, taud, tauf, U)
Short-term synaptic plasticity, following the Tsodyks-Markram model.

Implements the short-term plasticity model described in Markram et al (1998). Differential signaling via the
same axon of neocortical pyramidal neurons, PNAS. Synaptic dynamics is described by two variables x and u,
which follow the following differential equations:

dx/dt=(1-x)/taud (depression)
du/dt=(U-u)/tauf (facilitation)

where taud, tauf are time constants and U is a parameter in 0..1. Each presynaptic spike triggers modifications
of the variables:

u<-u+U*(1-u)
x<-x*(1-u)

Synaptic weights are modulated by the product u*x (in 0..1) (before update).

Reference:

•Markram et al (1998). “Differential signaling via the same axon of neocortical pyramidal neurons”, PNAS.
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8.9 Synapses

The Synapses class was introduced in Brian version 1.4 and can be used to define everything around synaptic
interactions. It can replace the Connection class but is much more flexible, in particular it allows to directly
incorporate descriptions of synaptic plasticity. See section Synapses in the user manual for instructions how to use the
class.

class brian.Synapses(source, target=None, model=None, pre=None, post=None, max_delay=0.0
* second, level=0, clock=None, code_namespace=None, unit_checking=True,
method=None, freeze=False, implicit=False, order=1)

Set of synapses between two neuron groups

Initialised with arguments:

source The source NeuronGroup.

target=None The target NeuronGroup. By default, target=source.

model=None The equations that defined the synaptic variables, as an Equations object or a string. The syntax
is the same as for a NeuronGroup.

pre=None The code executed when presynaptic spikes arrive at the synapses. There can be multiple presy-
naptic codes, passed as a list or tuple of strings.

post=None The code executed when postsynaptic spikes arrive at the synapses.

max_delay=0*ms The maximum pre and postsynaptic delay. This is only useful if the delays can change
during the simulation.

level=0 See Equations for details.

clock=None The clock for updating synaptic state variables according to model. Currently, this must be
identical to both the source and target clocks.

compile=False Whether or not to attempt to compile the differential equation solvers (into Python code).
Typically, for best performance, both compile and freeze should be set to True for nonlinear differ-
ential equations.

freeze=False If True, parameters are replaced by their values at the time of initialization.

method=None If not None, the integration method is forced. Possible values are linear, nonlinear, Euler,
exponential_Euler (overrides implicit and order keywords).

unit_checking=True Set to False to bypass unit-checking.

order=1 The order to use for nonlinear differential equation solvers. TODO: more details.

implicit=False Whether to use an implicit method for solving the differential equations. TODO: more
details.

code_namespace=None Namespace for the pre and post codes.

Methods

state(var)
Returns the vector of values for state variable var, with length the number of synapses. The vector is an
instance of class SynapticVariable.

synapse_index(i)
Returns the synapse indexes correspond to i, which can be a tuple or a slice. If i is a tuple (m,n), m and n
can be an integer, an array, a slice or a subgroup.

The following usages are also possible for a Synapses object S:
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len(S) Returns the number of synapses in S.

Attributes:

delay The presynaptic delays for all synapses (synapse->delay). If there are multiple presynaptic delays
(multiple pre codes), this is a list.

delay_pre Same as delay.

delay_post The postsynaptic delays for all synapses (synapse->delay post).

lastupdate The time of last update of all synapses (synapse->last update). This only exists if there are
dynamic synaptic variables.

Internal attributes:

source The source neuron group.

target The target neuron group.

_S The state matrix (a 2D dynamical array with values of synaptic variables). At run time, it is transformed
into a static 2D array (with compress()).

presynaptic The (dynamic) array of presynaptic neuron indexes for all synapses (synapse->i).

postsynaptic The array of postsynaptic neuron indexes for all synapses (synapse->j).

synapses_pre A list of (dynamic) arrays giving the set of synapse indexes for each presynaptic neuron i
(i->synapses)

synapses_post A list of (dynamic) arrays giving the set of synapse indexes for each postsynaptic neuron j
(j->synapses)

queues List of SpikeQueues for pre and postsynaptic spikes.

codes The compiled codes to be executed on pre and postsynaptic spikes.

namespaces The namespaces for the pre and postsynaptic codes.

class brian.SynapticEquations(expr=’‘, level=0, **kwds)
Equations for the Synapses class. The only difference with Equations is that differential equations can be
marked for an event-driven implementation, e.g.:

dx/dt=-x/tau : 1 (event-driven)

class brian.synapses.synapticvariable.SynapticVariable(data, synapses, name)
A vector of synaptic variables that is returned by Synapses.__getattr__(), and that can be subscripted
with 2 or 3 arguments.

Example usages, where S is Synapses object:

S.w[12] Value of variable w for synapse 12.

S.w[1,3] Value of variable w for synapses from neuron 1 to neuron 3. This is an array, as there can be several
synapses for a given neuron pair (e.g. with different delays)

S.w[1,3,4] Value of variable w for synapse 4 from neuron 1 to neuron 3.

Indexes can be integers, slices, arrays or groups.

Synaptic variables can be assigned values as follows:

S.w[P,Q]=x where x is a float or a 1D array. The number of elements in the array must equal the number of
selected synapses.
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S.w[P,Q]=s where s is a string. The string is Python code that is executed in a single vectorised operation,
where i is the presynaptic neuron index (a vector of length the number of synapses), j is the postsynaptic
neuron index and n is the number of synapses. The methods rand and randn return arrays of n random
values.

Initialised with arguments:

data Vector of values.

synapses The Synapses object.

to_matrix(multiple_synapses=’last’)
Returns the wanted state as a matrix of shape (# presynaptic neurons, # postsynaptic neurons) for visu-
alization purposes. The returned array value at [i,j] is the value of the wanted synaptic variable for the
synapse between (i, j). If not synapse exists between those two neurons, then the value is np.nan.

•Dealing with multiple synapses between two neurons

Outputting a 2D matrix is not generally possible, because multiple synapses can exist for a given pair or
pre- and post-synaptic neurons. In this case, the state values for all the synapses between neurons i and j
are aggregated in the (i, j) position of the matrix. This is done according to the multiple_synapses
keyword argument which can be changed:

mutiple_synapses = ’last’ (default) takes the last value

mutiple_synapses = ’first’ takes the first value

mutiple_synapses = ’min’ takes the min of the values

mutiple_synapses = ’max’ takes the max of the values

mutiple_synapses = ’sum’ takes the sum of the values

Please note that this function should be used for visualization, and should not be used to
store or reload synaptic variable values. If you want to do so, refer to the documentation at
Synapses.save_connectivity().

class brian.synapses.synapticvariable.SynapticDelayVariable(data, synapses, name)
A synaptic variable that is a delay. The main difference with SynapticVariable is that delays are stored as
integers (timebins) but accessed as absolute times (in seconds).

TODO: pass the clock as argument.

class brian.synapses.spikequeue.SpikeQueue(source, synapses, delays, max_delay=0.0 * sec-
ond, maxevents=1, precompute_offsets=True)

Spike queue

Initialised with arguments:

source The neuron group that sends spikes.

synapses A list of synapses (synapses[i]=array of synapse indices for neuron i).

delays An array of delays (delays[k]=delay of synapse k).

max_delay=0*ms The maximum delay (in second) of synaptic events. At run time, the structure is resized to
the maximum delay in delays, and thus the max_delay should only be specified if delays can change
during the simulation (in which case offsets should not be precomputed).

maxevents = INITIAL_MAXSPIKESPER_DT The initial size of the queue for each timestep. Note that
the data structure automatically grows to the required size, and therefore this option is generally not useful.

precompute_offsets = True A flag to precompute offsets. By default, offsets (an internal array de-
rived from delays, used to insert events in the data structure, see below) are precomputed for all neurons,
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the first time the object is run. This usually results in a speed up but takes memory, which is why it can be
disabled.

Data structure

A spike queue is implemented as a 2D array X that is circular in the time direction (rows) and dynamic in
the events direction (columns). The row index corresponding to the current timestep is currentime. Each
element contains the target synapse index.

The class is implemented as a SpikeMonitor, so that the propagate() method is called at each timestep (of
the monitored group).

Methods

next()
Advances by one timestep.

peek()
Returns the all the synaptic events corresponding to the current time, as an array of synapse indexes.

precompute_offsets()
Precompute all offsets corresponding to delays. This assumes that delays will not change during the
simulation. If they do (between two runs for example), then this method can be called.

Offsets

Offsets are used to solve the problem of inserting multiple synaptic events with the same delay. This is difficult
to vectorise. If there are n synaptic events with the same delay, these events are given an offset between 0 and
n-1, corresponding to their relative position in the data structure. They can be either precalculated (faster), or
determined at run time (saves memory). Note that if they are determined at run time, then it is possible to also
vectorise over presynaptic spikes.

8.10 Network

The Network object stores simulation objects and runs simulations. Usage is described in detail below. For simple
scripts, you don’t even need to use the Network object itself, just directly use the ‘’magic” functions run() and
reinit() described below.

class brian.Network(*args, **kwds)
Contains simulation objects and runs simulations

Initialised as:

Network(...)

with ... any collection of objects that should be added to the Network. You can also pass lists of objects,
lists of lists of objects, etc. Objects that need to passed to the Network object are:

•NeuronGroup and anything derived from it such as PoissonGroup.

•Connection and anything derived from it.

•Any monitor such as SpikeMonitor or StateMonitor.

•Any network operation defined with the network_operation() decorator.

Models, equations, etc. do not need to be passed to the Network object.

The most important method is the run(duration) method which runs the simulation for the given length of
time (see below for details about what happens when you do this).

Example usage:
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G = NeuronGroup(...)
C = Connection(...)
net = Network(G,C)
net.run(1*second)

Methods

add(...) Add additional objects after initialisation, works the same way as initialisation.

remove(...) Remove objects from the Network.

run(duration[, report[, report_period]]) Runs the network for the given duration. See be-
low for details about what happens when you do this. See documentation for run() for an explanation of
the report and report_period keywords.

reinit(states=True) Reinitialises the network, runs each object’s reinit() and each clock’s
reinit() method (resetting them to 0). If states=False then it will not reinitialise the
NeuronGroup state variables.

stop() Can be called from a network_operation() for example to stop the network from running.

__len__() Returns the number of neurons in the network.

__call__(obj) Similar to add, but you can only pass one object and that object is returned. You would
only need this in obscure circumstances where objects needed to be added to the network but were either
not stored elsewhere or were stored in a way that made them difficult to extract, for example below the
NeuronGroup object is only added to the network if certain conditions hold:

net = Network(...)
if some_condition:

x = net(NeuronGroup(...))

What happens when you run

For an overview, see the Concepts chapter of the main documentation.

When you run the network, the first thing that happens is that it checks if it has been prepared and calls the
prepare()method if not. This just does various housekeeping tasks and optimisations to make the simulation
run faster. Also, an update schedule is built at this point (see below).

Now the update() method is repeatedly called until every clock has run for the given length of time. After
each call of the update() method, the clock is advanced by one tick, and if multiple clocks are being used,
the next clock is determined (this is the clock whose value of t is minimal amongst all the clocks). For example,
if you had two clocks in operation, say clock1 with dt=3*ms and clock2 with dt=5*ms then this will
happen:

1.update() for clock1, tick clock1 to t=3*ms, next clock is clock2 with t=0*ms.

2.update() for clock2, tick clock2 to t=5*ms, next clock is clock1 with t=3*ms.

3.update() for clock1, tick clock1 to t=6*ms, next clock is clock2 with t=5*ms.

4.update() for clock2, tick clock2 to t=10*ms, next clock is clock1 with t=6*ms.

5.update() for clock1, tick clock1 to t=9*ms, next clock is clock1 with t=9*ms.

6.update() for clock1, tick clock1 to t=12*ms, next clock is clock2 with t=10*ms. etc.

The update()method simply runs each operation in the current clock’s update schedule. See below for details
on the update schedule.

Update schedules
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An update schedule is the sequence of operations that are called for each update() step. The standard update
schedule is:

•Network operations with when = ’start’

•Network operations with when = ’before_groups’

•Call update() method for each NeuronGroup, this typically performs an integration time step for the
differential equations defining the neuron model.

•Network operations with when = ’after_groups’

•Network operations with when = ’middle’

•Network operations with when = ’before_connections’

•Call do_propagate() method for each Connection, this typically adds a value to the target state
variable of each neuron that a neuron that has fired is connected to. See Tutorial 2: Connections for a more
detailed explanation of this.

•Network operations with when = ’after_connections’

•Network operations with when = ’before_resets’

•Call reset() method for each NeuronGroup, typically resets a given state variable to a given reset
value for each neuron that fired in this update step.

•Network operations with when = ’after_resets’

•Network operations with when = ’end’

There is one predefined alternative schedule, which you can choose by calling the
update_schedule_groups_resets_connections() method before running the network for
the first time. As the name suggests, the reset operations are done before connections (and the appropriately
named network operations are called relative to this rearrangement). You can also define your own update
schedule with the set_update_schedule method (see that method’s API documentation for details). This
might be useful for example if you have a sequence of network operations which need to be run in a given order.

brian.network_operation(*args, **kwds)
Decorator to make a function into a NetworkOperation

A NetworkOperation is a callable class which is called every time step by the Network run method.
Sometimes it is useful to just define a function which is to be run every update step. This decorator can be used
to turn a function into a NetworkOperation to be added to a Network object.

Example usages

Operation doesn’t need a clock:

@network_operation
def f():

...

Automagically detect clock:

@network_operation
def f(clock):

...

Specify a clock:

@network_operation(specifiedclock)
def f(clock):

...
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Specify when the network operation is run (default is ’end’):

@network_operation(when=’start’)
def f():

...

Then add to a network as follows:

net = Network(f,...)

class brian.NetworkOperation(function=None, clock=None, when=’end’)
Callable class for operations that should be called every update step

Typically, you should just use the network_operation() decorator, but if you can’t for whatever reason,
use this. Note: current implementation only works for functions, not any callable object.

Initialisation:

NetworkOperation(function[,clock])

If your function takes an argument, the clock will be passed as that argument.

The ‘’magic” functions run() and reinit() work by searching for objects which could be added to a network,
constructing a network with all these objects, and working with that. They are suitable for simple scripts only. If you
have problems where objects are unexpectedly not being added to the network, the best thing to do would probably be
to just use an explicit Network object as above rather than trying to tweak your program to make the magic functions
work. However, details are available in the brian/magic.py source code.

brian.run(duration, threads=1, report=None, report_period=10.0 * second)
Run a network created from any suitable objects that can be found

Arguments:

duration the length of time to run the network for.

report How to report progress, the default None doesn’t report the progress. Some standard values for
report:

text, stdout Prints progress to the standard output.

stderr Prints progress to the standard error output stderr.

graphical, tkinter Uses the Tkinter module to show a graphical progress bar, this may interfere
with any other GUI code you have.

Alternatively, you can provide your own callback function by setting report to be a function
report(elapsed, complete) of two variables elapsed, the amount of time elapsed in seconds,
and complete the proportion of the run duration simulated (between 0 and 1). The report function is
guaranteed to be called at the end of the run with complete=1.0 so this can be used as a condition for
reporting that the computation is finished.

report_period How often the progress is reported (by default, every 10s).

Works by constructing a MagicNetwork object from all the suitable objects that could be found
(NeuronGroup, Connection, etc.) and then running that network. Not suitable for repeated runs or situa-
tions in which you need precise control.

brian.reinit(states=True)
Reinitialises any suitable objects that can be found

Usage:

reinit(states=True)
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Works by constructing a MagicNetwork object from all the suitable objects that could be found
(NeuronGroup, Connection, etc.) and then calling reinit() for each of them. Not suitable for re-
peated runs or situations in which you need precise control.

If states=False then NeuronGroup state variables will not be reinitialised.

brian.stop()
Globally stops any running network, this is reset the next time a network is run

brian.clear(erase=True, all=False)
Clears all Brian objects.

Specifically, it stops all existing Brian objects from being collected by MagicNetwork (objects created after
clearing will still be collected). If erase is True then it will also delete all data from these objects. This is
useful in, for example, ipython which stores persistent references to objects in any given session, stopping
the data and memory from being freed up. If all=True then all Brian objects will be cleared. See also
forget().

brian.forget(*objs)
Forgets the list of objects passed

Forgetting means that MagicNetwork will not pick up these objects, but all data is retained. You can pass
objects or lists of objects. Forgotten objects can be recalled with recall(). See also clear().

brian.recall(*objs)
Recalls previously forgotten objects

See forget() and clear().

class brian.MagicNetwork(verbose=False, level=1)
Creates a Network object from any suitable objects

Initialised as:

MagicNetwork()

The object returned can then be used just as a regular Network object. It works by finding any object in the
‘’execution frame” (i.e. in the same function, script or section of module code where the MagicNetwork was
created) derived from NeuronGroup, Connection or NetworkOperation.

Sample usage:

G = NeuronGroup(...)
C = Connection(...)
@network_operation
def f():

...
net = MagicNetwork()

Each of the objects G, C and f are added to net.

Advanced usage:

MagicNetwork([verbose=False[,level=1]])

with arguments:

verbose Set to True to print out a list of objects that were added to the network, for debugging purposes.

level Where to find objects. level=1 means look for objects where the MagicNetwork object was
created. The level argument says how many steps back in the stack to look.
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8.11 Monitors

Monitors are used to record properties of your network. The two most important are SpikeMonitor which records
spikes, and StateMonitor which records values of state variables. These objects are just added to the network like
a NeuronGroup or Connection.

Implementation note: monitors that record spikes are classes derived from Connection, and overwrite the
propagate method to store spikes. If you want to write your own custom spike monitors, you can do the
same (or just use SpikeMonitor with a custom function). Monitors that record values are classes derived from
NetworkOperation and implement the __call__method to store values each time the network updates. Custom
state monitors are most easily written by just writing your own network operation using the network_operation
decorator.

class brian.SpikeMonitor(source, record=True, delay=0, function=None)
Counts or records spikes from a NeuronGroup

Initialised as one of:

SpikeMonitor(source(,record=True))
SpikeMonitor(source,function=function)

Where:

source A NeuronGroup to record from

record True or False to record all the spikes or just summary statistics.

function A function f(spikes) which is passed the array of neuron numbers that have fired called each
step, to define custom spike monitoring.

Has attributes:

nspikes The number of recorded spikes

spikes A time ordered list of pairs (i,t) where neuron i fired at time t.

spiketimes A dictionary with keys the indices of the neurons, and values an array of the spike times of that
neuron. For example, t=M.spiketimes[3] gives the spike times for neuron 3.

it Return a tuple (i, t) where i and t are the arrays of spike indices and corresponding spike times (int
and float).

For M a SpikeMonitor, you can also write:

M[i] An array of the spike times of neuron i.

Notes:

SpikeMonitor is subclassed from Connection. To define a custom monitor, either define a subclass and
rewrite the propagate method, or pass the monitoring function as an argument (function=myfunction,
with def myfunction(spikes):...)

class brian.SpikeCounter(source)
Counts spikes from a NeuronGroup

Initialised as:

SpikeCounter(source)

With argument:

source A NeuronGroup to record from

Has two attributes:
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nspikes The number of recorded spikes

count An array of spike counts for each neuron

For a SpikeCounter M you can also write M[i] for the number of spikes counted for neuron i.

class brian.PopulationSpikeCounter(source, delay=0)
Counts spikes from a NeuronGroup

Initialised as:

PopulationSpikeCounter(source)

With argument:

source A NeuronGroup to record from

Has one attribute:

nspikes The number of recorded spikes

class brian.StateSpikeMonitor(source, var)
Counts or records spikes and state variables at spike times from a NeuronGroup

Initialised as:

StateSpikeMonitor(source, var)

Where:

source A NeuronGroup to record from

var The variable name or number to record from, or a tuple of variable names or numbers if you want to record
multiple variables for each spike.

Has two attributes:

nspikes
The number of recorded spikes

spikes
A time ordered list of tuples (i,t,v) where neuron i fired at time t and the specified variable had value
v. If you specify multiple variables, each tuple will be of the form (i,t,v0,v1,v2,...) where the
vi are the values corresponding in order to the variables you specified in the var keyword.

And two methods:

times(i=None)
Returns an array of the spike times for the whole monitored group, or just for neuron i if specified.

values(var, i=None)
Returns an array of the values of variable var for the whole monitored group, or just for neuron i if
specified.

class brian.StateMonitor(P, varname, clock=None, record=False, timestep=1, when=’end’)
Records the values of a state variable from a NeuronGroup.

Initialise as:

StateMonitor(P,varname(,record=False)
(,when=’end)(,timestep=1)(,clock=clock))

Where:

P The group to be recorded from
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varname The state variable name or number to be recorded

record What to record. The default value is False and the monitor will only record summary statistics
for the variable. You can choose record=integer to record every value of the neuron with that
number, record=‘‘list of integers to record every value of each of those
neurons, or ‘‘record=True to record every value of every neuron (although beware that this
may use a lot of memory).

when When the recording should be made in the network update, possible values are any of
the strings: ’start’, ’before_groups’, ’after_groups’, ’before_connections’,
’after_connections’, ’before_resets’, ’after_resets’, ’end’ (in order of when they
are run).

timestep A recording will be made each timestep clock updates (so timestep should be an integer).

clock A clock for the update schedule, use this if you have specified a clock other than the default one in your
network, or to update at a lower frequency than the update cycle. Note though that if the clock here is
different from the main clock, the when parameter will not be taken into account, as network updates are
done clock by clock. Use the timestep parameter if you need recordings to be made at a precise point
in the network update step.

The StateMonitor object has the following properties:

times The times at which recordings were made

mean The mean value of the state variable for every neuron in the group (not just the ones specified in the
record keyword)

var The unbiased estimate of the variances, as in mean

std The square root of var, as in mean

values A 2D array of the values of all the recorded neurons, each row is a single neuron’s values.

In addition, if M‘ is a StateMonitor object, you write:

M[i]

for the recorded values of neuron i (if it was specified with the record keyword). It returns a numpy array.

Methods:

plot([indices=None[, cmap=None[, refresh=None[, showlast=None[, redraw=True]]]]])
Plots the recorded values using pylab. You can specify an index or list of indices, otherwise all the recorded
values will be plotted. The graph plotted will have legends of the form name[i] for name the variable
name, and i the neuron index. If cmap is specified then the colours will be set according to the matplotlib
colormap cmap. refresh specifies how often (in simulation time) you would like the plot to refresh.
Note that this will only work if pylab is in interactive mode, to ensure this call the pylab ion() command.
If you are using the refresh option, showlast specifies a fixed time window to display (e.g. the last
100ms). If you are using more than one realtime monitor, only one of them needs to issue a redraw
command, therefore set redraw=False for all but one of them.

Note that with some IDEs, interactive plotting will not work with the default matplotlib backend, try doing
something like this at the beginning of your script (before importing brian):

import matplotlib
matplotlib.use(’WXAgg’)

You may need to experiment, try WXAgg, GTKAgg, QTAgg, TkAgg.

insert_spikes(spikemonitor[, value=0])
Inserts spikes into recorded traces (for plotting). State values at spike times are replaced with the given
value (peak value of spike).
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class brian.MultiStateMonitor(G, vars=None, clock=None, **kwds)
Monitors multiple state variables of a group

This class is a container for multiple StateMonitor objects, one for each variable in the group. You can
retrieve individual StateMonitor objects using M[name] or retrieve the recorded values using M[name,
i] for neuron i.

Initialised with a group G and a list of variables vars. If vars is omitted then all the variables of G will
be recorded. Any additional keyword argument used to initialise the object will be passed to the individual
StateMonitor objects (e.g. the when keyword).

Methods:

items(), iteritems() Returns the pairs (var, mon)

plot([indices[, cmap]]) Plots all the monitors (note that real-time plotting is not supported for this
class).

Attributes:

vars The list of variables recorded.

times The times at which recordings were made.

monitors The dictionary of monitors indexed by variable name.

Usage:

G = NeuronGroup(N, eqs, ...)
M = MultiStateMonitor(G, record=True)
...
run(...)
...
plot(M[’V’].times, M[’V’][0])
figure()
for name, m in M.iteritems():

plot(m.times, m[0], label=name)
legend()
show()

class brian.RecentStateMonitor(P, varname, duration=5.0 * msecond, clock=None, record=True,
timestep=1, when=’end’)

StateMonitor that records only the most recent fixed amount of time.

Works in the same way as a StateMonitor except that it has one additional initialiser keyword duration
which gives the length of time to record values for, the record keyword defaults to True instead of False,
and there are some different or additional attributes:

values, values_, times, times_ These will now return at most the most recent values over an interval
of maximum time duration. These arrays are copies, so for faster access use unsorted_values,
etc.

unsorted_values, unsorted_values_, unsorted_times, unsorted_times_ The raw ver-
sions of the data, the associated times may not be in sorted order and if duration hasn’t passed, not all
the values will be meaningful.

current_time_index Says which time index the next values to be recorded will be stored in, varies from
0 to M-1.

has_looped Whether or not the current_time_index has looped from M back to 0 - can be used to
tell whether or not every value in the unsorted_values array is meaningful or not (they will only all
be meaningful when has_looped==True, i.e. after time duration).
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The __getitem__ method also returns values in sorted order.

To plot, do something like:

plot(M.times, M.values[:, i])

class brian.AERSpikeMonitor(source, filename, record=False, delay=0)
Records spikes to an AER file

Initialised as:

FileSpikeMonitor(source, filename[, record=False])

Does everything that a SpikeMonitor does except ONLY records the spikes to the named file in AER format,
during the simulation. These spikes can then be reloaded via the io.load_aer function and used later into a
SpikeGeneratorGroup.

It is about three times faster than the FileSpikeMonitor and creates smaller files. On the other hand those
files are not human-readable because they are in binary format.

Has one additional method:

close() Closes the file manually (will happen automatically when the program ends).

class brian.FileSpikeMonitor(source, filename, record=False, delay=0)
Records spikes to a file

Initialised as:

FileSpikeMonitor(source, filename[, record=False])

Does everything that a SpikeMonitor does except also records the spikes to the named file. note that spikes
are recorded as an ASCII file of lines each of the form:

i, t

Where i is the neuron that fired, and t is the time in seconds.

Has one additional method:

close() Closes the file manually (will happen automatically when the program ends).

class brian.ISIHistogramMonitor(source, bins, delay=0)
Records the interspike interval histograms of a group.

Initialised as:

ISIHistogramMonitor(source, bins)

source The source group to record from.

bins The lower bounds for each bin, so that e.g. bins = [0*ms, 10*ms, 20*ms] would correspond
to bins with intervals 0-10ms, 10-20ms and 20+ms.

Has properties:

bins The bins array passed at initialisation.

count An array of length len(bins) counting how many ISIs were in each bin.

This object can be passed directly to the plotting function hist_plot().

class brian.PopulationRateMonitor(source, bin=None)
Monitors and stores the (time-varying) population rate
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Initialised as:

PopulationRateMonitor(source,bin)

Records the average activity of the group for every bin.

Properties:

rate, rate_ An array of the rates in Hz.

times, times_ The times of the bins.

bin The duration of a bin (in second).

class brian.VanRossumMetric(source, tau=2.0 * msecond)
van Rossum spike train metric. From M. van Rossum (2001): A novel spike distance (Neural Computation).

Compute the van Rossum distance between every spike train from the source population.

Arguments:

source The group to compute the distances for.

tau Time constant of the kernel (low pass filter).

Has one attribute:

distance A square symmetric matrix containing the distances.

class brian.CoincidenceCounter(source, data, spiketimes_offset=None, spikedelays=None, coin-
cidence_count_algorithm=’exclusive’, onset=None, delta=4.0 *
msecond)

Coincidence counter class.

Counts the number of coincidences between the spikes of the neurons in the network (model spikes), and some
user-specified data spike trains (target spikes). This number is defined as the number of target spikes such that
there is at least one model spike within +- delta, where delta is the half-width of the time window.

Initialised as:

cc = CoincidenceCounter(source, data, delta = 4*ms)

with the following arguments:

source A NeuronGroup object which neurons are being monitored.

data The list of spike times. Several spike trains can be passed in the following way. Define a
single 1D array data which contains all the target spike times one after the other. Now de-
fine an array spiketimes_offset of integers so that neuron i should be linked to target train:
data[spiketimes_offset[i]], data[spiketimes_offset[i]+1], etc.

It is essential that each spike train with the spiketimes array should begin with a spike at a large neg-
ative time (e.g. -1*second) and end with a spike that is a long time after the duration of the run (e.g.
duration+1*second).

delta=4*ms The half-width of the time window for the coincidence counting algorithm.

spiketimes_offset A 1D array, spiketimes_offset[i] is the index of the first spike of the target
train associated to neuron i.

spikedelays A 1D array with spike delays for each neuron. All spikes from the target train associated to
neuron i are shifted by spikedelays[i].

coincidence_count_algorithm If set to exclusive, the algorithm cannot count more than one co-
incidence for each model spike. If set to inclusive, the algorithm can count several coincidences for a
single model spike.
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onset A scalar value in seconds giving the start of the counting: no coincidences are counted before onset.

Has three attributes:

coincidences The number of coincidences for each neuron of the NeuronGroup. coincidences[i]
is the number of coincidences for neuron i.

model_length The number of spikes for each neuron. model_length[i] is the spike count for neuron
i.

target_length The number of spikes in the target spike train associated to each neuron.

class brian.StateHistogramMonitor(group, varname, range, period=1.0 * msecond, nbins=20)
Records the histogram of a state variable from a NeuronGroup.

Initialise as:

StateHistogramMonitor(P,varname,range(,period=1*ms)(,nbins=20))

Where:

P The group to be recorded from

varname The state variable name or number to be recorded

range The minimum and maximum values for the state variable. A 2-tuple of floats.

period When to record.

nbins Number of bins for the histogram.

The StateHistogramMonitor object has the following properties:

mean The mean value of the state variable for every neuron in the group

var The unbiased estimate of the variances, as in mean

std The square root of var, as in mean

hist A 2D array of the histogram values of all the neurons, each row is a single neuron’s histogram.

bins A 1D array of the bin centers used to compute the histogram

bin_edges A 1D array of the bin edges used to compute the histogram

In addition, if M‘ is a StateHistogramMonitor object, you write:

M[i]

for the histogram of neuron i.

8.12 Plotting

Most plotting should be done with the PyLab commands, all of which are loaded when you import Brian. See:

http://matplotlib.sourceforge.net/matplotlib.pylab.html

for help on PyLab.

Brian currently defines just two plotting functions of its own, raster_plot() and hist_plot().

brian.raster_plot(*monitors, **additionalplotoptions)
Raster plot of a SpikeMonitor

Usage
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raster_plot(monitor,options...) Plots the spike times of the monitor on the x-axis, and the neuron
number on the y-axis

raster_plot(monitor0,monitor1,...,options...) Plots the spike times for all the monitors
given, with y-axis defined by placing a spike from neuron n of m in monitor i at position i+n/m

raster_plot(options...) Guesses the monitors to plot automagically

Options

Any of PyLab options for the plot command can be given, as well as:

showplot=False set to True to run pylab’s show() function

newfigure=False set to True to create a new figure with pylab’s figure() function

xlabel label for the x-axis

ylabel label for the y-axis

title title for the plot

showgrouplines=False set to True to show a line between each monitor

grouplinecol colour for group lines

spacebetweengroups value between 0 and 1 to insert a space between each group on the y-axis

refresh Specify how often (in simulation time) you would like the plot to refresh. Note that this will only
work if pylab is in interactive mode, to ensure this call the pylab ion() command.

showlast If you are using the refresh option above, plots are much quicker if you specify a fixed time
window to display (e.g. the last 100ms).

redraw If you are using more than one realtime monitor, only one of them needs to issue a redraw command,
therefore set this to False for all but one of them.

Note that with some IDEs, interactive plotting will not work with the default matplotlib backend, try doing
something like this at the beginning of your script (before importing brian):

import matplotlib
matplotlib.use(’WXAgg’)

You may need to experiment, try WXAgg, GTKAgg, QTAgg, TkAgg.

brian.hist_plot(histmon=None, **plotoptions)
Plot a histogram

Usage

hist_plot(histmon,options...) Plot the given histogram monitor

hist_plot(options...) Guesses which histogram monitor to use

with argument:

histmon is a monitor of histogram type

Notes

Plots only the first n-1 of n bars in the histogram, because the nth bar is for the interval (-,infinity).

Options

Any of PyLab options for bar can be given, as well as:

showplot=False set to True to run pylab’s show() function

newfigure=True set to False not to create a new figure with pylab’s figure() function
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xlabel label for the x-axis

ylabel label for the y-axis

title title for the plot

8.13 Variable updating

8.13.1 Timed Arrays

class brian.TimedArray(*args, **kwds)
An array where each value has an associated time.

Initialisation arguments:

arr The values of the array. The first index is the time index. Any array shape works in principle, but only
1D/2D arrays are supported (other shapes may work, but may not). The idea is to, have the shapes (T,) or
(T, N) for T the number of time steps and N the number of neurons.

times A 1D array of times whose length should be the same as the first dimension of arr. Usually it is
preferable to specify a clock rather than an array of times, but this doesn’t work in the case where the time
intervals are not fixed.

clock Specify the times corresponding to array values by a clock. The t attribute of the clock is the time
of the first value in the array, and the time interval is the dt attribute of the clock. If neither times nor
clock is specified, a clock will be guessed in the usual way (see Clock).

start, dt Rather than specifying a clock, you can specify the start time and time interval explicitly. Tech-
nically, this is useful because it doesn’t create a Clock object which can lead to ambiguity about which
clock is the default. If dt is specified and start is not, start is assumed to be 0.

Note that if the clock, or start time and dt, of the array should be the default clock values, then you should not
specify clock, start or dt (see Technical notes below).

Arbitrary slicing of the array is supported, but the clock will only be preserved where the intervals can be
guaranteed to be fixed, that is except for the case where lists or numpy arrays are used on the time index.

Timed arrays can be called as if they were a function of time if the array times are based on a clock (but
not if the array times are arbitrary as the look up costs would be excessive). If x(t) is called where
times[i]<=t<times[i]+dt for some index i then x(t) will have the value x[i]. You can also call
x(t) with t a 1D array. If x is 1D then x(t)[i]=x(t[i]), if x is 2D then x(t)[i]=x(t[i])[i].

Has one method:

See also TimedArraySetter, set_group_var_by_array() and NeuronGroup.

Technical notes

Note that specifying a new clock, or values of start and dt, will mean that if you use this TimedArray to set the
value of a NeuronGroup variable, it will be updated on the schedule of this clock, which can (due to floating
point errors) induce some timing problems. This rarely happens, but if an occasional inaccuracy of order dt
might conceivably be critical for your simulation, you should use RegularClock objects instead of Clock
objects.

class brian.TimedArraySetter(*args, **kwds)
Sets NeuronGroup values with a TimedArray.

At the beginning of each update step, this object will set the values of a given state variable of a group with the
value from the array corresponding to the current simulation time.
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Initialisation arguments:

group The NeuronGroup to which the variable belongs.

var The name or index of the state variable in the group.

arr The array of values used to set the variable in the group. Can be an array or a TimedArray. If it is an
array, you should specify the times or clock arguments, or leave them blank to use the default clock.

times Times corresponding to the array values, see TimedArray for more details.

clock The clock for the NetworkOperation. If none is specified, use the group’s clock. If arr is not a
TimedArray then this clock will be used to initialise it too.

start, dt Can specify these instead of a clock (see TimedArray for details).

when The standard NetworkOperation when keyword, although note that the default value is ‘start’.

brian.set_group_var_by_array(*args, **kwds)
Sets NeuronGroup values with a TimedArray.

Creates a TimedArraySetter, see that class for details.

8.13.2 Linked variables

brian.linked_var(source, var=0, func=None, when=’start’, clock=None)
Used for linking one NeuronGroup variable to another.

Sample usage:

G = NeuronGroup(...)
H = NeuronGroup(...)
G.V = linked_var(H, ’W’)

In this scenario, the variable V in group G will always be updated with the values from variable W in group H.
The groups G and H must be the same size (although subgroups can be used if they are not the same size).

Arguments:

source The group from which values will be taken.

var The state variable of the source group to take values from.

func An additional function of one argument to pass the source variable values through, e.g. func=lambda
x:clip(x,0,Inf) to half rectify the values.

when The time in the main Brian loop at which the copy operation is performed, as explained in Network.

clock The update clock for the copy operation, by default it will use the clock of the target group.

8.14 Analysis

8.14.1 Statistics of spike trains

brian.firing_rate(spikes)
Rate of the spike train.

brian.CV(spikes)
Coefficient of variation.
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brian.correlogram(T1, T2, width=20.0 * msecond, bin=1.0 * msecond, T=None)
Returns a cross-correlogram with lag in [-width,width] and given bin size. T is the total duration (optional) and
should be greater than the duration of T1 and T2. The result is in Hz (rate of coincidences in each bin).

N.B.: units are discarded. TODO: optimise?

brian.autocorrelogram(T0, width=20.0 * msecond, bin=1.0 * msecond, T=None)
Returns an autocorrelogram with lag in [-width,width] and given bin size. T is the total duration (optional) and
should be greater than the duration of T1 and T2. The result is in Hz (rate of coincidences in each bin).

N.B.: units are discarded.

brian.CCF(T1, T2, width=20.0 * msecond, bin=1.0 * msecond, T=None)
Returns the cross-correlation function with lag in [-width,width] and given bin size. T is the total duration
(optional). The result is in Hz**2: CCF(T1,T2)=<T1(t)T2(t+s)>

N.B.: units are discarded.

brian.ACF(T0, width=20.0 * msecond, bin=1.0 * msecond, T=None)
Returns the autocorrelation function with lag in [-width,width] and given bin size. T is the total duration (op-
tional). The result is in Hz**2: ACF(T0)=<T0(t)T0(t+s)>

N.B.: units are discarded.

brian.CCVF(T1, T2, width=20.0 * msecond, bin=1.0 * msecond, T=None)
Returns the cross-covariance function with lag in [-width,width] and given bin size. T is the total duration
(optional). The result is in Hz**2: CCVF(T1,T2)=<T1(t)T2(t+s)>-<T1><T2>

N.B.: units are discarded.

brian.ACVF(T0, width=20.0 * msecond, bin=1.0 * msecond, T=None)
Returns the autocovariance function with lag in [-width,width] and given bin size. T is the total duration (op-
tional). The result is in Hz**2: ACVF(T0)=<T0(t)T0(t+s)>-<T0>**2

N.B.: units are discarded.

brian.total_correlation(T1, T2, width=20.0 * msecond, T=None)
Returns the total correlation coefficient with lag in [-width,width]. T is the total duration (optional). The result
is a real (typically in [0,1]): total_correlation(T1,T2)=int(CCVF(T1,T2))/rate(T1)

brian.spike_triggered_average(spikes, stimulus, max_interval, dt, onset=None, display=False)
Spike triggered average reverse correlation. spikes is an array containing spike times stimulus is an array con-
taining the stimulus max_interval (second) is the duration of the averaging window dt (second) is the sampling
period onset (second) before which the spikes are discarded. Note: it will be at least as long as max_interval
display (default=False) display the number of spikes processed out of the total number output the spike triggered
average and the corresponding time axis

8.15 Input/output

8.15.1 General data management

class brian.tools.datamanager.DataManager(name, datapath=’‘)
DataManager is a simple class for managing data produced by multiple runs of a simulation carried out in
separate processes or machines. Each process is assigned a unique ID and Python Shelf object to write its data
to. Each shelf is a dictionary whose keys must be strings. The DataManager can collate information across
multiple shelves using the get(key) method, which returns a dictionary with keys the unique session names, and
values the value written in that session (typically only the values will be of interest). If each value is a tuple or
list then you can use the get_merged(key) to get a concatenated list. If the data type is more complicated you

300 Chapter 8. Reference



Brian Documentation, Release 1.4.1

can use the get(key) method and merge by hand. The idea is each process generates files with names that do
not interfere with each other so that there are no file concurrency issues, and then in the data analysis phase, the
data generated separately by each process is merged together.

Methods:

get(key) Return dictionary with keys the session names, and values the values stored in that session for the
given key.

get_merged(key) Return a single list of the merged lists or tuples if each value for every session is a list
or tuple.

get_matching(match) Returns a dictionary with keys the keys matching match and values get(key). If
match is a string, a matching key has to start with that string. If match is a function, a key matches if
match(key).

get_merged_matching(match) Like get_merged(key) but across all keys that match.

get_flat_matching(match) Returns a straight list of every value session[key] for all sessions and all
keys matching match.

iteritems() Returns all (key, value) pairs, for each Shelf file, as an iterator (useful for large files with
too much data to be loaded into memory).

itervalues() Return all values, for each Shelf file, as an iterator.

items(), values() As for iteritems and itervalues but returns a list rather than an iterator.

itemcount() Returns the total number of items across all the Shelf files.

keys() A list of all the keys across all sessions.

session() Returns a randomly named session Shelf, multiple processes can write to these without worrying
about concurrency issues.

computer_session() Returns a consistently named Shelf specific to that user and computer, only one
process can write to it without worrying about concurrency issues.

locking_session(), locking_computer_session() Returns a LockingSession object, a limited
proxy to the underlying Shelf which acquires and releases a lock before and after every operation, making
it safe for concurrent access.

session_filenames() A list of all the shelf filenames for all sessions.

make_unique_key() Generates a unique key for inserting an element into a session without overwriting
data, uses uuid4.

Attributes:

basepath The base path for data files.

computer_name A (hopefully) unique identifier for the user and computer, consists of the username and the
computer network name.

computer_session_filename The filename of the computer-specific session file. This file should only
be accessed by one process at a time, there’s no way to protect against concurrent write accesses causing
it to be corrupted.

8.15.2 Spikes management

The following function describes how to load Address-Event Representation files (AER files). See also the
AERSpikeMonitor for saving spikes in that format, and SpikeGeneratorGroup for reusing them in a sim-
ulation.
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brian.load_aer(filename, check_sorted=False, reinit_time=False)
Loads Address Event Representation (AER) data files for use in Brian. Files contain spikes as a binary repre-
sentation of an address (i.e. neuron identifier) and a timestamp.

This function returns two arrays, an array of addresses (neuron indices) and an array of spike times (in second).

Note: For index files (that point to multiple .(ae)dat files, typically aeidx files) it will return a list containing
tuples (addr, time) as for single files.

Usage:

ids, times = load_aer(‘/path/to/file.aedat’)

Keyword Arguments:

reinit_time If True, sets the first spike time to zero and all others relative to that one.

check_sorted If True, checks if timestamps are sorted, and sorts them if necessary.

Example use:

To use the spikes recorded in the AER file filename in a Brian NeuronGroup, one should do:

addr, timestamp = load_AER(filename, reinit_time = True) G = AERSpikeGeneratorGroup((addr, timestamps))

An example script can be found in examples/misc/spikes_io.py

8.15.3 Other external datatypes

brian.read_neuron_dat(name)
Reads a Neuron vector file (.dat).

Returns vector of times, vector(s) of values

brian.read_atf(name)
Reads an Axon ATF file (.atf).

Returns vector of times, vector of values

8.16 Task farming

brian.tools.taskfarm.run_tasks(dataman, task, items, gui=True, poolsize=0, initargs=None,
initkwds=None, verbose=None, numitems=None)

Run a series of tasks using multiple CPUs on a single computer.

Initialised with arguments:

dataman The DataManager object used to store the results in, see below.

task The task function or class (see below).

items A sequence (e.g. list or iterator) of arguments to be passed to the task.

gui=True Whether or not to use a Tkinter based GUI to show progress and terminate the task run.

poolsize=0 The number of CPUs to use. If the value is 0, use all available CPUs, if it is -1 use all but one
CPU, etc.

initargs, initkwds If task is a class, these are the initialisation arguments and keywords for the class.

verbose=None Specify True or False to print out every progress message (defaults to False if the GUI is
used, or True if not).
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numitems=None For iterables (rather than fixed length sequences), if you specify the number of items, an
estimate of the time remaining will be given.

The task (defined by a function or class, see below) will be called on each item in items, and the results
saved to dataman. Results are stored in the format (key, val) where key is a unique but meaningless
identifier. Results can be retrieved using dataman.values() or (for large data sets that should be iterated
over) dataman.itervalues().

The task can either be a function or a class. If it is a function, it will be called for each item in items. If
the items are tuples, the function will be called with those tuples as arguments (e.g. if the item is (1,2,3)
the function will be called as task(1, 2, 3)). If the task is a class, it can have an __init__ method
that is called once for each process (each CPU) at the beginning of the task run. If the __init__ method
has a process_number argument, it will be passed an integer value from 0 to numprocesses-1 giving
the number of the process (note, this is not the process ID). The class should define a __call__ method that
behaves the same as above for task being a function. In both cases (function or class), if the arguments include
a keyword report then it will be passed a value that can be passed as the report keyword in Brian’s run()
function to give feedback on the simulation as it runs. A task function can also set self.taskname as a
string that will be displayed on the GUI to give additional information.

Warning: On Windows, make sure that run_tasks() is only called from within a block such as:

if __name__==’__main__’:
run_tasks(...)

Otherwise, the program will go into a recursive loop.

Note that this class only allows you to run tasks on a single computer, to distribute work over multiple computers,
we suggest using Playdoh.

8.17 Remote control

class brian.RemoteControlServer(server=None, authkey=’brian’, clock=None, global_ns=None, lo-
cal_ns=None, level=0)

Allows remote control (via IP) of a running Brian script

Initialisation arguments:

server The IP server details, a pair (host, port). If you want to allow control only on the one machine (for
example, by an IPython shell), leave this as None (which defaults to host=’localhost’, port=2719). To
allow remote control, use (‘’, portnumber).

authkey The authentication key to allow access, change it from ‘brian’ if you are allowing access from outside
(otherwise you allow others to run arbitrary code on your machine).

clock The clock specifying how often to poll for incoming commands.

global_ns, local_ns, level Namespaces in which incoming commands will be executed or evaluated,
if you leave them blank it will be the local and global namespace of the frame from which this function
was called (if level=1, or from a higher level if you specify a different level here).

Once this object has been created, use a RemoteControlClient to issue commands.

Example usage

Main simulation code includes a line like this:

server = RemoteControlServer()
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In an IPython shell you can do something like this:

client = RemoteControlClient()
spikes = client.evaluate(’M.spikes’)
i, t = zip(*spikes)
plot(t, i, ’.’)
client.execute(’stop()’)

class brian.RemoteControlClient(server=None, authkey=’brian’)
Used to remotely control (via IP) a running Brian script

Initialisation arguments:

server The IP server details, a pair (host, port). If you want to allow control only on the one machine (for
example, by an IPython shell), leave this as None (which defaults to host=’localhost’, port=2719). To
allow remote control, use (‘’, portnumber).

authkey The authentication key to allow access, change it from ‘brian’ if you are allowing access from outside
(otherwise you allow others to run arbitrary code on your machine).

Use a RemoteControlServer on the simulation you want to control.

Has the following methods:

execute(code)
Executes the specified code in the server process. If it raises an exception, the server process will catch it
and reraise it in the client process.

evaluate(code)
Evaluate the code in the server process and return the result. If it raises an exception, the server process
will catch it and reraise it in the client process.

set(name, value)
Sets the variable name (a string) to the given value (can be an array, etc.). Note that the variable is set in
the local namespace, not the global one, and so this cannot be used to modify global namespace variables.
To do that, set a local namespace variable and then call execute() with an instruction to change the
global namespace variable.

pause()
Temporarily stop the simulation in the server process, continue simulation with the :meth:’go’ method.

go()
Continue a simulation that was paused.

stop()
Stop a simulation, equivalent to execute(’stop()’).

Example usage

Main simulation code includes a line like this:

server = RemoteControlServer()

In an IPython shell you can do something like this:

client = RemoteControlClient()
spikes = client.evaluate(’M.spikes’)
i, t = zip(*spikes)
plot(t, i, ’.’)
client.execute(’stop()’)
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8.18 Progress reporting

class brian.utils.progressreporting.ProgressReporter(report=’stderr’, period=10.0,
first_report=-1.0)

Standard text and graphical progress reports

Initialised with arguments:

report

Can be one of the following strings:

’print’, ’text’, ’stdout’ Reports progress to standard console.

’stderr’ Reports progress to error console.

’graphical’, ’tkinter’ A simple graphical progress bar using Tkinter.

Alternatively, it can be any output stream in which case text reports will be sent to it, or a custom
callback function report(elapsed, complete) taking arguments elapsed the amount of
time that has passed and complete the fraction of the computation finished.

period How often reports should be generated in seconds.

first_report The time of the first report (nothing will be done before this amount of time has elapsed).

Methods:

start()
Call at the beginning of a task to start timing it.

finish()
Call at the end of a task to finish timing it. Note that with the Tkinter class, if you do not call this it will
stop the Python script from finishing, stopping memory from being freed up.

update(complete)
Call with the fraction of the task (or subtask if subtask() has been called) completed, between 0 and 1.

subtask(complete, tasksize)
After calling subtask(complete, tasksize), subsequent calls to update will report progress be-
tween a fraction complete and complete+tasksize of the total task. complete represents the
amount of the total task completed at the beginning of the task, and tasksize the size of the subtask as
a proportion of the whole task.

equal_subtask(tasknum, numtasks)
If a task can be divided into numtasks equally sized subtasks, you can use this method instead of
subtask, where tasknum is the number of the subtask about to start.

Note that in Python 2.6+, this can be used as a context manager, and it will automatically call the start() and
finish() methods at the beginning and end, e.g.:

with ProgressReporter(period=0.1) as progress:
for i in xrange(10):

time.sleep(1)
progress.update((i+1.0)/10)

8.19 Model fitting toolbox

The model fitting toolbox uses the package Playdoh, you can see the documentation here.
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brian.library.modelfitting.modelfitting(**kwds)
Model fitting function.

Fits a spiking neuron model to electrophysiological data (injected current and spikes).

See also the section Model fitting in the user manual.

Arguments

model An Equations object containing the equations defining the model.

reset A reset value for the membrane potential, or a string containing the reset equations.

threshold A threshold value for the membrane potential, or a string containing the threshold equations.

refractory The refractory period in second. If it’s a single value, the same refractory will be used in all
the simulations. If it’s a list or a tuple, the fitting will also optimize the refractory period (see **params
below).

Warning: when using a refractory period, you can’t use a custom reset, only a fixed one.

data A list of spike times, or a list of several spike trains as a list of pairs (index, spike time) if the fit must
be performed in parallel over several target spike trains. In this case, the modelfitting function returns as
many parameters sets as target spike trains.

input_var=’I’ The variable name used in the equations for the input current.

input A vector of values containing the time-varying signal the neuron responds to (generally an injected
current).

dt The time step of the input (the inverse of the sampling frequency).

**params The list of parameters to fit the model with. Each parameter must be set as follows:
param_name=[bound_min, min, max, bound_max] where bound_min and bound_max
are the boundaries, and min and max specify the interval from which the parameter values are
uniformly sampled at the beginning of the optimization algorithm. If not using boundaries, set
param_name=[min, max].

Also, you can add a fit parameter which is a spike delay for all spikes : add the special parameter delays
in **params, for example modelfitting(..., delays=[-10*ms, 10*ms]).

You can also add fit the refractory period by specifying modelfitting(...,
refractory=[-10*ms, 10*ms]).

popsize Size of the population (number of particles) per target train used by the optimization algorithm.

maxiter Number of iterations in the optimization algorithm.

optparams Optimization algorithm parameters. It is a dictionary: keys are parameter names, values are
parameter values or lists of parameters (one value per group). This argument is specific to the optimization
algorithm used. See PSO, GA, CMAES.

delta=4*ms The precision factor delta (a scalar value in second).

slices=1 The number of time slices to use.

overlap=0*ms When using several time slices, the overlap between consecutive slices, in seconds.

initial_values A dictionary containing the initial values for the state variables.

cpu The number of CPUs to use in parallel. It is set to the number of CPUs in the machine by default.

gpu The number of GPUs to use in parallel. It is set to the number of GPUs in the machine by default.

precision GPU only: a string set to either float or double to specify whether to use single or double
precision on the GPU. If it is not specified, it will use the best precision available.
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returninfo=False Boolean indicating whether the modelfitting function should return technical informa-
tion about the optimization.

scaling=None Specify the scaling used for the parameters during the optimization. It can be None or
’mapminmax’. It is None by default (no scaling), and mapminmax by default for the CMAES algo-
rithm.

algorithm=CMAES The optimization algorithm. It can be PSO, GA or CMAES.

optparams={} Optimization parameters. See

method=’Euler’ Integration scheme used on the CPU and GPU: ’Euler’ (default), RK, or
exponential_Euler. See also Numerical integration.

machines=[] A list of machine names to use in parallel. See Clusters.

Return values

Return an OptimizationResult object with the following attributes:

best_pos Minimizing position found by the algorithm. For array-like fitness functions, it is a single vector if
there is one group, or a list of vectors. For keyword-like fitness functions, it is a dictionary where keys are
parameter names and values are numeric values. If there are several groups, it is a list of dictionaries.

best_fit The value of the fitness function for the best positions. It is a single value if there is one group, or
it is a list if there are several groups.

info A dictionary containing various information about the optimization.

Also, the following syntax is possible with an OptimizationResult instance or. The key is either an
optimizing parameter name for keyword-like fitness functions, or a dimension index for array-like fitness func-
tions.

or[key] it is the best key parameter found (single value), or the list of the best parameters key found for all
groups.

or[i] where i is a group index. This object has attributes best_pos, best_fit, info but only for group
i.

or[i][key] where i is a group index, is the same as or[i].best_pos[key].

For more details on the gamma factor, see Jolivet et al. 2008, “A benchmark test for a quantitative assessment
of simple neuron models”, J. Neurosci. Methods (available in PDF here).

brian.library.modelfitting.print_table(results, precision=4, colwidth=16)
Displays the results of an optimization in a table.

Arguments:

results The results returned by the minimize of maximize function.

precision = 4 The number of decimals to print for the parameter values.

colwidth = 16 The width of the columns in the table.

brian.library.modelfitting.open_server(port=None, maxcpu=None, maxgpu=None, lo-
cal=None)

Start the Playdoh server.

Arguments:

port=DEFAULT_PORT The port (integer) of the Playdoh server. The default is DEFAULT_PORT, which is
2718.

maxcpu=MAXCPU The total number of CPUs the Playdoh server can use. MAXCPU is the total number of
CPUs on the computer.
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maxgpu=MAXGPU The total number of GPUs the Playdoh server can use. MAXGPU is the total number of
GPUs on the computer, if PyCUDA is installed.

brian.library.modelfitting.get_spikes(model=None, reset=None, threshold=None,
input=None, input_var=’I’, dt=None, ini-
tial_values=None, **params)

Retrieves the spike times corresponding to the best parameters found by the modelfitting function.

Arguments

model, reset, threshold, input, input_var, dt, initial_values Same parameters as for the
modelfitting function.

**params The best parameters returned by the modelfitting function.

Returns

spiketimes The spike times of the model with the given input and parameters.

brian.library.modelfitting.predict(model=None, reset=None, threshold=None, data=None,
delta=4.0 * msecond, input=None, input_var=’I’,
dt=None, **params)

Predicts the gamma factor of a fitted model with respect to the data with a different input current.

Arguments

model, reset, threshold, input_var, dt Same parameters as for the modelfitting function.

input The input current, that can be different from the current used for the fitting procedure.

data The experimental spike times to compute the gamma factor against. They have been obtained with the
current input.

**params The best parameters returned by the modelfitting function.

Returns

gamma The gamma factor of the model spike trains against the data. If there were several groups in the fitting
procedure, it is a vector containing the gamma factor for each group.

class brian.library.modelfitting.PSO
Particle Swarm Optimization algorithm. See the wikipedia entry on PSO.

Optimization parameters:

omega The parameter omega is the “inertial constant”

cl

cl is the “local best” constant affecting how much the particle’s personal best position influences its
movement.

cg cg is the “global best” constant affecting how much the global best position influences each particle’s
movement.

See the wikipedia entry on PSO for more details (note that they use c_1 and c_2 instead of cl and cg).
Reasonable values are (.9, .5, 1.5), but experimentation with other values is a good idea.

class brian.library.modelfitting.GA
Standard genetic algorithm. See the wikipedia entry on GA

If more than one worker is used, it works in an island topology, i.e. as a coarse - grained parallel genetic
algorithms which assumes a population on each of the computer nodes and migration of individuals among the
nodes.

Optimization parameters:
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proportion_parents = 1 proportion (out of 1) of the entire population taken as potential parents.

migration_time_interval = 20 whenever more than one worker is used, it is the number of iteration
at which a migration happens. (note for different groups case: this parameter can only have one value, i.e.
every group will have the same value (the first of the list))

proportion_migration = 0.2 proportion (out of 1) of the island population that will migrate to the
next island (the best one) and also the worst that will be replaced by the best of the previous island. (note
for different groups case: this parameter can only have one value, i.e. every group will have the same value
(the first of the list))

proportion_xover = 0.65 proportion (out of 1) of the entire population which will undergo a cross
over.

proportion_elite = 0.05 proportion (out of 1) of the entire population which will be kept for the next
generation based on their best fitness.

The proportion of mutation is automatically set to 1 - proportion_xover -
proportion_elite.

func_selection = ’stoch_uniform’ This function define the way the parents are chosen (it is the
only one available). It lays out a line in which each parent corresponds to a section of the line of length
proportional to its scaled value. The algorithm moves along the line in steps of equal size. At each step,
the algorithm allocates a parent from the section it lands on. The first step is a uniform random number
less than the step size.

func_xover = ’intermediate’

func_xover specifies the function that performs the crossover. The following ones are avail-
able:

•intermediate: creates children by taking a random weighted average of the parents. You
can specify the weights by a single parameter, ratio_xover (which is 0.5 by default).
The function creates the child from parent1 and parent2 using the following formula:

child = parent1 + rand * Ratio * ( parent2 - parent1)

•discrete_random: creates a random binary vector and selects the genes where the vector is
a 1 from the first parent, and the gene where the vector is a 0 from the second parent, and
combines the genes to form the child.

•one_point: chooses a random integer n between 1 and ndimensions and then selects vector
entries numbered less than or equal to n from the first parent. It then Selects vector entries
numbered greater than n from the second parent. Finally, it concatenates these entries to form a
child vector.

•two_points: it selects two random integers m and n between 1 and ndimensions. The func-
tion selects vector entries numbered less than or equal to m from the first parent. Then it
selects vector entries numbered from m + 1 to n, inclusive, from the second parent. Then
it selects vector entries numbered greater than n from the first parent. The algorithm then
concatenates these genes to form a single gene.

•heuristic: returns a child that lies on the line containing the two parents, a small distance away
from the parent with the better fitness value in the direction away from the parent with the worse
fitness value. You can specify how far the child is from the better parent by the parameter
ratio_xover (which is 0.5 by default)

•linear_combination: creates children that are linear combinations of the two parents with the
parameter ratio_xover (which is 0.5 by default and should be between 0 and 1):
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child = parent1 + Ratio * ( parent2 - parent1)

For ratio_xover = 0.5 every child is an arithmetic mean of two parents.

func_mutation = ’gaussian’

This function define how the genetic algorithm makes small random changes in the individuals in the
population to create mutation children. Mutation provides genetic diversity and enable the genetic
algorithm to search a broader space. Different options are available:

•gaussian: adds a random number taken from a Gaussian distribution with mean 0 to each entry
of the parent vector.

The ‘scale_mutation’ parameter (0.8 by default) determines the standard deviation at the first
generation by scale_mutation * (Xmax - Xmin) where Xmax and Xmin are the
boundaries.

The ‘shrink_mutation’ parameter (0.2 by default) controls how the standard deviation shrinks as
generations go by:

:math:‘sigma_{i} = \sigma_{i-1}(1-shrink_{mutation} * i/maxiter)‘
at iteration i.

•uniform: The algorithm selects a fraction of the vector entries of an individual for mutation,
where each entry has a probability mutation_rate (default is 0.1) of being mutated. In the
second step, the algorithm replaces each selected entry by a random number selected uniformly
from the range for that entry.

class brian.library.modelfitting.CMAES
Covariance Matrix Adaptation Evolution Strategy algorithm See the wikipedia entry on CMAES and also the
author’s website <http://www.lri.fr/~hansen/cmaesintro.html>‘

Optimization parameters:

proportion_selective = 0.5 This parameter (refered to as mu in the CMAES algorithm) is the pro-
portion (out of 1) of the entire population that is selected and used to update the generative distribution.
(note for different groups case: this parameter can only have one value, i.e. every group will have the same
value (the first of the list))

bound_strategy = 1: In the case of a bounded problem, there are two ways to handle the new generated
points which fall outside the boundaries. (note for different groups case: this parameter can only have one
value, i.e. every group will have the same value (the first of the list))

bound_strategy = 1. With this strategy, every point outside the domain is repaired, i.e. it is pro-
jected to its nearset possible value xrepaired. In other words, components that are infeasible in x are
set to the (closest) boundary value in xrepaired The fitness function on the repaired search points is
evaluated and a penalty which depends on the distance to the repaired solution is added ffitness(x) =
f(xrepaired) + γ‖x− xrepaired‖2 The repaired solution is disregarded afterwards.

bound_strategy = 2. With this strategy any infeasible solution x is resampled until it become feasi-
ble. It should be used only if the optimal solution is not close to the infeasible domain.

See p.28 of <http://www.lri.fr/~hansen/cmatutorial.pdf> for more details gamma:

gamma is the weight γ in the previously introduced penalty function. (note for different groups case:
this parameter can only have one value, i.e. every group will have the same value (the first of the
list))
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8.20 Electrode compensation

The L^p electrode compensation method is implemented, along with a spike detection method and a quality test
(Rossant et al 2012).

brian.library.electrophysiology.Lp_compensate(I, Vraw, dt, slice_duration=1.0 * second,
p=1.0, criterion=None, full=False, do-
compensation=True, **initial_params)

Perform the L^p electrode compensation technique on a recorded membrane potential.

•I: injected current, 1D vector.

•Vraw: raw (uncompensated) voltage trace, 1D vector, same length as I.

•dt: sampling period (inverse of the sampling frequency), in second.

•slice_duration=1*second: duration of each time slice, where the fit is performed independently

•p=1.0: parameter of the Lp error. p should be less than 2. Experimenting with this parameter is recom-
mended. Use p~1 at first, especially with difficult recordings Use p~0.5 with good recordings (less noise)
or with biophysical model simulations without noise.

•criterion: a custom error function used in the optimization. If None, it is the Lp error. Otherwise, it
should be a function of the form “lambda raw, model: error”, where raw and model are the raw and linear
model membrane potential traces. For instance, the function for the Lp error is: “lambda raw, model:
sum(abs(raw-model)**self.p)”. It can also be a function of the form: “lambda raw, model, electrode:
error” in the case when one needs the electrode response to compute the error.

•full=False: if False, return a tuple (compensated_trace, parameters) where parameters is an array of the
best parameters (one column/slice) If True, return a dict with the following keys: Vcompensated, Vneuron,
Velectrode, params=params, instance where instance in the ElectrodeCompensation object.

•docompensation=True: if False, does not perform the optimization and only return an ElectrodeCompen-
sation object instance, to take full control over the optimization procedure.

•params: a list of initial parameters for the optimization, in the following order: R, tau, Vr, Re, taue. Best
results are obtained when reasonable estimates of the parameters are given.

brian.library.electrophysiology.find_spikes(v, vc=None, dt=0.1 * msecond, refrac-
tory=5.0 * msecond, check_quality=False)

Find spikes in an intracellular trace.

•vc=None: separatrix (in volt). If None, a separatrix will be automatically detected using the method
described in the paper.

•dt=0.1*ms: timestep in the trace (inverse of the sampling frequency)

•refractory=5*ms: refractory period: minimal duration between two successive spikes

•check_quality=False: if True, will check spike detection quality using signal detection theory. The function
then returns a tuple (spikes,scores) where scores is a dict.

brian.library.electrophysiology.get_trace_quality(v, I, full=False)
Compute the quality of a compensated trace.

•v: a compensated intracellular trace

•I: injected current

•full=False: if True, return a dict with the following keys: correlation, spikes, coefficients, after_onsets,
peaks_prediction, after_onsets, spike_before, spike_onset, spike_after
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8.21 Brian hears

See Also:

User guide for Brian hears.

brian.hears.set_default_samplerate(samplerate)
Sets the default samplerate for Brian hears objects, by default 44.1 kHz.

8.21.1 Sounds

class brian.hears.Sound
Class for working with sounds, including loading/saving, manipulating and playing.

For an overview, see Sounds.

Initialisation

The following arguments are used to initialise a sound object

data Can be a filename, an array, a function or a sequence (list or tuple). If its a filename, the sound file
(WAV or AIFF) will be loaded. If its an array, it should have shape (nsamples, nchannels). If its a
function, it should be a function f(t). If its a sequence, the items in the sequence can be filenames, functions,
arrays or Sound objects. The output will be a multi-channel sound with channels the corresponding sound
for each element of the sequence.

samplerate=None The samplerate, if necessary, will use the default (for an array or function) or the sam-
plerate of the data (for a filename).

duration=None The duration of the sound, if initialising with a function.

Loading, saving and playing

static load(filename)
Load the file given by filename and returns a Sound object. Sound file can be either a .wav or a .aif file.

save(filename, normalise=False, samplewidth=2)
Save the sound as a WAV.

If the normalise keyword is set to True, the amplitude of the sound will be normalised to 1. The sam-
plewidth keyword can be 1 or 2 to save the data as 8 or 16 bit samples.

play(normalise=False, sleep=False)
Plays the sound (normalised to avoid clipping if required). If sleep=True then the function will wait until
the sound has finished playing before returning.

Properties

duration
The length of the sound in seconds.

nsamples
The number of samples in the sound.

nchannels
The number of channels in the sound.

times
An array of times (in seconds) corresponding to each sample.

left
The left channel for a stereo sound.
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right
The right channel for a stereo sound.

channel(n)
Returns the nth channel of the sound.

Generating sounds

All sound generating methods can be used with durations arguments in samples (int) or units (e.g. 500*ms).
One can also set the number of channels by setting the keyword argument nchannels to the desired value. Notice
that for noise the channels will be generated independantly.

static tone(*args, **kwds)
Returns a pure tone at frequency for duration, using the default samplerate or the given one. The
frequency and phase parameters can be single values, in which case multiple channels can be speci-
fied with the nchannels argument, or they can be sequences (lists/tuples/arrays) in which case there is
one frequency or phase for each channel.

static whitenoise(*args, **kwds)
Returns a white noise. If the samplerate is not specified, the global default value will be used.

static powerlawnoise(*args, **kwds)
Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as
1/(f**alpha).

Sample usage:

noise = powerlawnoise(200*ms, 1, samplerate=44100*Hz)

Arguments:

duration Duration of the desired output.

alpha Power law exponent.

samplerate Desired output samplerate

static brownnoise(*args, **kwds)
Returns brown noise, i.e powerlawnoise() with alpha=2

static pinknoise(*args, **kwds)
Returns pink noise, i.e powerlawnoise() with alpha=1

static silence(*args, **kwds)
Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.

static click(*args, **kwds)
Returns a click of the given duration.

If peak is not specified, the amplitude will be 1, otherwise peak refers to the peak dB SPL of the click,
according to the formula 28e-6*10**(peak/20.).

static clicks(*args, **kwds)
Returns a series of n clicks (see click()) separated by interval.

static harmoniccomplex(*args, **kwds)
Returns a harmonic complex composed of pure tones at integer multiples of the fundamental frequency
f0. The amplitude and phase keywords can be set to either a single value or an array of values. In the
former case the value is set for all harmonics, and harmonics up to the sampling frequency are generated.
In the latter each harmonic parameter is set separately, and the number of harmonics generated corresponds
to the length of the array.

8.21. Brian hears 313



Brian Documentation, Release 1.4.1

static vowel(*args, **kwds)
Returns an artifically created spoken vowel sound (following the source-filter model of speech production)
with a given pitch.

The vowel can be specified by either providing vowel as a string (‘a’, ‘i’ or ‘u’) or by setting formants
to a sequence of formant frequencies.

The returned sound is normalized to a maximum amplitude of 1.

The implementation is based on the MakeVowel function written by Richard O. Duda, part of the Auditory
Toolbox for Matlab by Malcolm Slaney: http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/

Timing and sequencing

static sequence(*sounds, samplerate=None)
Returns the sequence of sounds in the list sounds joined together

repeat(n)
Repeats the sound n times

extended(duration)
Returns the Sound with length extended by the given duration, which can be the number of samples or a
length of time in seconds.

shifted(duration, fractional=False, filter_length=2048)
Returns the sound delayed by duration, which can be the number of samples or a length of time in seconds.
Normally, only integer numbers of samples will be used, but if fractional=True then the filtering
method from http://www.labbookpages.co.uk/audio/beamforming/fractionalDelay.html will be used (in-
troducing some small numerical errors). With this method, you can specify the filter_length, larger
values are slower but more accurate, especially at higher frequencies. The large default value of 2048
samples provides good accuracy for sounds with frequencies above 20 Hz, but not for lower frequency
sounds. If you are restricted to high frequency sounds, a smaller value will be more efficient. Note that if
fractional=True then duration is assumed to be a time not a number of samples.

resized(L)
Returns the Sound with length extended (or contracted) to have L samples.

Slicing

One can slice sound objects in various ways, for example sound[100*ms:200*ms] returns the part of the
sound between 100 ms and 200 ms (not including the right hand end point). If the sound is less than 200 ms
long it will be zero padded. You can also set values using slicing, e.g. sound[:50*ms] = 0 will silence the
first 50 ms of the sound. The syntax is the same as usual for Python slicing. In addition, you can select a subset
of the channels by doing, for example, sound[:, -5:] would be the last 5 channels. For time indices, either
times or samples can be given, e.g. sound[:100] gives the first 100 samples. In addition, steps can be used
for example to reverse a sound as sound[::-1].

Arithmetic operations

Standard arithemetical operations and numpy functions work as you would expect with sounds, e.g.
sound1+sound2, 3*sound or abs(sound).

Level

level
Can be used to get or set the level of a sound, which should be in dB. For single channel sounds a value in
dB is used, for multiple channel sounds a value in dB can be used for setting the level (all channels will be
set to the same level), or a list/tuple/array of levels. It is assumed that the unit of the sound is Pascals.

atlevel(level)
Returns the sound at the given level in dB SPL (RMS) assuming array is in Pascals. level should be a
value in dB, or a tuple of levels, one for each channel.
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maxlevel
Can be used to set or get the maximum level of a sound. For mono sounds, this is the same as the level,
but for multichannel sounds it is the maximum level across the channels. Relative level differences will
be preserved. The specified level should be a value in dB, and it is assumed that the unit of the sound is
Pascals.

atmaxlevel(level)
Returns the sound with the maximum level across channels set to the given level. Relative level differences
will be preserved. The specified level should be a value in dB and it is assumed that the unit of the sound
is Pascals.

Ramping

ramp(when=’onset’, duration=10.0 * msecond, envelope=None, inplace=True)
Adds a ramp on/off to the sound

when=’onset’ Can take values ‘onset’, ‘offset’ or ‘both’

duration=10*ms The time over which the ramping happens

envelope A ramping function, if not specified uses sin(pi*t/2)**2. The function should be a
function of one variable t ranging from 0 to 1, and should increase from f(0)=0 to f(0)=1. The
reverse is applied for the offset ramp.

inplace Whether to apply ramping to current sound or return a new array.

ramped(*args, **kwds)
Returns a ramped version of the sound (see Sound.ramp()).

Plotting

spectrogram(low=None, high=None, log_power=True, other=None, **kwds)
Plots a spectrogram of the sound

Arguments:

low=None, high=None If these are left unspecified, it shows the full spectrogram, otherwise it shows
only between low and high in Hz.

log_power=True If True the colour represents the log of the power.

**kwds Are passed to Pylab’s specgram command.

Returns the values returned by pylab’s specgram, namely (pxx, freqs, bins, im) where pxx
is a 2D array of powers, freqs is the corresponding frequencies, bins are the time bins, and im is the
image axis.

spectrum(*args, **kwds)
Returns the spectrum of the sound and optionally plots it.

Arguments:

low, high If these are left unspecified, it shows the full spectrum, otherwise it shows only between low
and high in Hz.

log_power=True If True it returns the log of the power.

display=False Whether to plot the output.

Returns (Z, freqs, phase) where Z is a 1D array of powers, freqs is the corresponding frequen-
cies, phase is the unwrapped phase of spectrum.

brian.hears.savesound(sound, filename, normalise=False, samplewidth=2)
Save the sound as a WAV.
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If the normalise keyword is set to True, the amplitude of the sound will be normalised to 1. The samplewidth
keyword can be 1 or 2 to save the data as 8 or 16 bit samples.

brian.hears.loadsound(filename)
Load the file given by filename and returns a Sound object. Sound file can be either a .wav or a .aif file.

brian.hears.play(*sounds, normalise=False, sleep=False)
Plays the sound (normalised to avoid clipping if required). If sleep=True then the function will wait until the
sound has finished playing before returning.

brian.hears.whitenoise(*args, **kwds)
Returns a white noise. If the samplerate is not specified, the global default value will be used.

brian.hears.powerlawnoise(*args, **kwds)
Returns a power-law noise for the given duration. Spectral density per unit of bandwidth scales as 1/(f**alpha).

Sample usage:

noise = powerlawnoise(200*ms, 1, samplerate=44100*Hz)

Arguments:

duration Duration of the desired output.

alpha Power law exponent.

samplerate Desired output samplerate

brian.hears.brownnoise(*args, **kwds)
Returns brown noise, i.e powerlawnoise() with alpha=2

brian.hears.pinknoise(*args, **kwds)
Returns pink noise, i.e powerlawnoise() with alpha=1

brian.hears.irns(*args, **kwds)
Returns an IRN_S noise. The iterated ripple noise is obtained trough a cascade of gain and delay filtering. For
more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.

brian.hears.irno(*args, **kwds)
Returns an IRN_O noise. The iterated ripple noise is obtained many attenuated and delayed version of the
original broadband noise. For more details: see Yost 1996 or chapter 15 in Hartman Sound Signal Sensation.

brian.hears.tone(*args, **kwds)
Returns a pure tone at frequency for duration, using the default samplerate or the given one. The frequency
and phase parameters can be single values, in which case multiple channels can be specified with the
nchannels argument, or they can be sequences (lists/tuples/arrays) in which case there is one frequency
or phase for each channel.

brian.hears.click(*args, **kwds)
Returns a click of the given duration.

If peak is not specified, the amplitude will be 1, otherwise peak refers to the peak dB SPL of the click,
according to the formula 28e-6*10**(peak/20.).

brian.hears.clicks(*args, **kwds)
Returns a series of n clicks (see click()) separated by interval.

brian.hears.harmoniccomplex(*args, **kwds)
Returns a harmonic complex composed of pure tones at integer multiples of the fundamental frequency f0. The
amplitude and phase keywords can be set to either a single value or an array of values. In the former case
the value is set for all harmonics, and harmonics up to the sampling frequency are generated. In the latter each
harmonic parameter is set separately, and the number of harmonics generated corresponds to the length of the
array.
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brian.hears.silence(*args, **kwds)
Returns a silent, zero sound for the given duration. Set nchannels to set the number of channels.

brian.hears.sequence(*sounds, samplerate=None)
Returns the sequence of sounds in the list sounds joined together

dB

class brian.hears.dB_type
The type of values in dB.

dB values are assumed to be RMS dB SPL assuming that the sound source is measured in Pascals.

class brian.hears.dB_error
Error raised when values in dB are used inconsistently with other units.

8.21.2 Filterbanks

class brian.hears.LinearFilterbank(source, b, a)
Generalised linear filterbank

Initialisation arguments:

source The input to the filterbank, must have the same number of channels or just a single channel. In the
latter case, the channels will be replicated.

b, a The coeffs b, a must be of shape (nchannels, m) or (nchannels, m, p). Here m is the order of
the filters, and p is the number of filters in a chain (first you apply [:, :, 0], then [:, :, 1], etc.).

The filter parameters are stored in the modifiable attributes filt_b, filt_a and filt_state (the variable
z in the section below).

Has one method:

decascade(ncascade=1)
Reduces cascades of low order filters into smaller cascades of high order filters.

ncascade is the number of cascaded filters to use, which should be a divisor of the original number.

Note that higher order filters are often numerically unstable.

Notes

These notes adapted from scipy’s lfilter() function.

The filterbank is implemented as a direct II transposed structure. This means that for a single channel and
element of the filter cascade, the output y for an input x is defined by:

a[0]*y[m] = b[0]*x[m] + b[1]*x[m-1] + ... + b[m]*x[0]
- a[1]*y[m-1] - ... - a[m]*y[0]

using the following difference equations:

y[i] = b[0]*x[i] + z[0,i-1]
z[0,i] = b[1]*x[i] + z[1,i-1] - a[1]*y[i]
...
z[m-3,i] = b[m-2]*x[i] + z[m-2,i-1] - a[m-2]*y[i]
z[m-2,i] = b[m-1]*x[i] - a[m-1]*y[i]
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where i is the output sample number.

The rational transfer function describing this filter in the z-transform domain is:

-1 -nb
b[0] + b[1]z + ... + b[m] z

Y(z) = --------------------------------- X(z)
-1 -na

a[0] + a[1]z + ... + a[m] z

class brian.hears.FIRFilterbank(source, impulse_response, use_linearfilterbank=False, mini-
mum_buffer_size=None)

Finite impulse response filterbank

Initialisation parameters:

source Source sound or filterbank.

impulse_response Either a 1D array providing a single impulse response applied to every input channel,
or a 2D array of shape (nchannels, ir_length) for ir_length the number of samples in the
impulse response. Note that if you are using a multichannel sound x as a set of impulse responses, the
array should be impulse_response=array(x.T).

minimum_buffer_size=None If specified, gives a minimum size to the buffer. By default, for
the FFT convolution based implementation of FIRFilterbank, the minimum buffer size will be
3*ir_length. For maximum efficiency with FFTs, buffer_size+ir_length should be a power
of 2 (otherwise there will be some zero padding), and buffer_size should be as large as possible.

class brian.hears.RestructureFilterbank(source, numrepeat=1, type=’serial’, numtile=1, in-
dexmapping=None)

Filterbank used to restructure channels, including repeating and interleaving.

Standard forms of usage:

Repeat mono source N times:

RestructureFilterbank(source, N)

For a stereo source, N copies of the left channel followed by N copies of the right channel:

RestructureFilterbank(source, N)

For a stereo source, N copies of the channels tiled as LRLRLR...LR:

RestructureFilterbank(source, numtile=N)

For two stereo sources AB and CD, join them together in serial to form the output channels in order ABCD:

RestructureFilterbank((AB, CD))

For two stereo sources AB and CD, join them together interleaved to form the output channels in order ACBD:

RestructureFilterbank((AB, CD), type=’interleave’)

These arguments can also be combined together, for example to AB and CD into output channels AABBCCD-
DAABBCCDDAABBCCDD:

RestructureFilterbank((AB, CD), 2, ’serial’, 3)

The three arguments are the number of repeats before joining, the joining type (‘serial’ or ‘interleave’) and the
number of tilings after joining. See below for details.

Initialise arguments:
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source Input source or list of sources.

numrepeat=1 Number of times each channel in each of the input sources is repeated before mixing the source
channels. For example, with repeat=2 an input source with channels AB will be repeated to form AABB

type=’serial’ The method for joining the source channels, the options are ’serial’ to join the channels
in series, or ’interleave’ to interleave them. In the case of ’interleave’, each source must have
the same number of channels. An example of serial, if the input sources are abc and def the output would
be abcdef. For interleave, the output would be adbecf.

numtile=1 The number of times the joined channels are tiled, so if the joined channels are ABC and
numtile=3 the output will be ABCABCABC.

indexmapping=None Instead of specifying the restructuring via numrepeat, type, numtile you
can directly give the mapping of input indices to output indices. So for a single stereo source
input, indexmapping=[1,0] would reverse left and right. Similarly, with two mono sources,
indexmapping=[1,0] would have channel 0 of the output correspond to source 1 and channel 1 of
the output corresponding to source 0. This is because the indices are counted in order of channels starting
from the first source and continuing to the last. For example, suppose you had two sources, each consisting
of a stereo sound, say source 0 was AB and source 1 was CD then indexmapping=[1, 0, 3, 2]
would swap the left and right of each source, but leave the order of the sources the same, i.e. the output
would be BADC.

class brian.hears.Join(*sources)
Filterbank that joins the channels of its inputs in series, e.g. with two input sources with channels AB and
CD respectively, the output would have channels ABCD. You can initialise with multiple sources separated by
commas, or by passing a list of sources.

class brian.hears.Interleave(*sources)
Filterbank that interleaves the channels of its inputs, e.g. with two input sources with channels AB and CD
respectively, the output would have channels ACBD. You can initialise with multiple sources separated by
commas, or by passing a list of sources.

class brian.hears.Repeat(source, numrepeat)
Filterbank that repeats each channel from its input, e.g. with 3 repeats channels ABC would map to AAABB-
BCCC.

class brian.hears.Tile(source, numtile)
Filterbank that tiles the channels from its input, e.g. with 3 tiles channels ABC would map to ABCABCABC.

class brian.hears.FunctionFilterbank(source, func, nchannels=None, **params)
Filterbank that just applies a given function. The function should take as many arguments as there are sources.

For example, to half-wave rectify inputs:

FunctionFilterbank(source, lambda x: clip(x, 0, Inf))

The syntax lambda x: clip(x, 0, Inf) defines a function object that takes a single argument x and
returns clip(x, 0, Inf). The numpy function clip(x, low, high) returns the values of x clipped
between low and high (so if x<low it returns low, if x>high it returns high, otherwise it returns x). The
symbol Inf means infinity, i.e. no clipping of positive values.

Technical details

Note that functions should operate on arrays, in particular on 2D buffered segments, which are arrays of shape
(bufsize, nchannels). Typically, most standard functions from numpy will work element-wise.

If you want a filterbank that changes the shape of the input (e.g. changes the number of channels), set the
nchannels keyword argument to the number of output channels.

class brian.hears.SumFilterbank(source, weights=None)
Sum filterbanks together with given weight vectors.
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For example, to take the sum of two filterbanks:

SumFilterbank((fb1, fb2))

To take the difference:

SumFilterbank((fb1, fb2), (1, -1))

class brian.hears.DoNothingFilterbank(source)
Filterbank that does nothing to its input.

Useful for removing a set of filters without having to rewrite your code. Can also be used for simply writing
compound derived classes. For example, if you want a compound Filterbank that does AFilterbank and then
BFilterbank, but you want to encapsulate that into a single class, you could do:

class ABFilterbank(DoNothingFilterbank):
def __init__(self, source):

a = AFilterbank(source)
b = BFilterbank(a)
DoNothingFilterbank.__init__(self, b)

However, a more general way of writing compound filterbanks is to use CombinedFilterbank.

class brian.hears.ControlFilterbank(source, inputs, targets, updater, max_interval=None)
Filterbank that can be used for controlling behaviour at runtime

Typically, this class is used to implement a control path in an auditory model, modifying some filterbank param-
eters based on the output of other filterbanks (or the same ones).

The controller has a set of input filterbanks whose output values are used to modify a set of output filterbanks.
The update is done by a user specified function or class which is passed these output values. The controller
should be inserted as the last bank in a chain.

Initialisation arguments:

source The source filterbank, the values from this are used unmodified as the output of this filterbank.

inputs Either a single filterbank, or sequence of filterbanks which are used as inputs to the updater.

targets The filterbank or sequence of filterbanks that are modified by the updater.

updater The function or class which does the updating, see below.

max_interval If specified, ensures that the updater is called at least as often as this interval (but it may be
called more often). Can be specified as a time or a number of samples.

The updater

The updater argument can be either a function or class instance. If it is a function, it should have a form like:

# A single input
def updater(input):

...

# Two inputs
def updater(input1, input2):

...

# Arbitrary number of inputs
def updater(*inputs):

...
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Each argument input to the function is a numpy array of shape (numsamples, numchannels) where
numsamples is the number of samples just computed, and numchannels is the number of channels in the
corresponding filterbank. The function is not restricted in what it can do with these inputs.

Functions can be used to implement relatively simple controllers, but for more complicated situations you
may want to maintain some state variables for example, and in this case you can use a class. The object
updater should be an instance of a class that defines the __call__ method (with the same syntax as above
for functions). In addition, you can define a reinitialisation method reinit() which will be called when the
buffer_init() method is called on the filterbank, although this is entirely optional.

Example

The following will do a simple form of gain control, where the gain parameter will drift exponentially towards
target_rms/rms with a given time constant:

# This class implements the gain (see Filterbank for details)
class GainFilterbank(Filterbank):

def __init__(self, source, gain=1.0):
Filterbank.__init__(self, source)
self.gain = gain

def buffer_apply(self, input):
return self.gain*input

# This is the class for the updater object
class GainController(object):

def __init__(self, target, target_rms, time_constant):
self.target = target
self.target_rms = target_rms
self.time_constant = time_constant

def reinit(self):
self.sumsquare = 0
self.numsamples = 0

def __call__(self, input):
T = input.shape[0]/self.target.samplerate
self.sumsquare += sum(input**2)
self.numsamples += input.size
rms = sqrt(self.sumsquare/self.numsamples)
g = self.target.gain
g_tgt = self.target_rms/rms
tau = self.time_constant
self.target.gain = g_tgt+exp(-T/tau)*(g-g_tgt)

And an example of using this with an input source, a target RMS of 0.2 and a time constant of 50 ms, updating
every 10 ms:

gain_fb = GainFilterbank(source)
updater = GainController(gain_fb, 0.2, 50*ms)
control = ControlFilterbank(gain_fb, source, gain_fb, updater, 10*ms)

class brian.hears.CombinedFilterbank(source)
Filterbank that encapsulates a chain of filterbanks internally.

This class should mostly be used by people writing extensions to Brian hears rather than by users directly. The
purpose is to take an existing chain of filterbanks and wrap them up so they appear to the user as a single
filterbank which can be used exactly as any other filterbank.

In order to do this, derive from this class and in your initialisation follow this pattern:

class RectifiedGammatone(CombinedFilterbank):
def __init__(self, source, cf):
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CombinedFilterbank.__init__(self, source)
source = self.get_modified_source()
# At this point, insert your chain of filterbanks acting on
# the modified source object
gfb = Gammatone(source, cf)
rectified = FunctionFilterbank(gfb,

lambda input: clip(input, 0, Inf))
# Finally, set the output filterbank to be the last in your chain
self.set_output(fb)

This combination of a Gammatone and a rectification via a FunctionFilterbank can now be used as a
single filterbank, for example:

x = whitenoise(100*ms)
fb = RectifiedGammatone(x, [1*kHz, 1.5*kHz])
y = fb.process()

Details

The reason for the get_modified_source() call is that the source attribute of a filterbank can be changed
after creation. The modified source provides a buffer (in fact, a DoNothingFilterbank) so that the input
to the chain of filters defined by the derived class doesn’t need to be changed.

8.21.3 Filterbank library

class brian.hears.Gammatone(source, cf, b=1.019, erb_order=1, ear_Q=9.26449, min_bw=24.7)
Bank of gammatone filters.

They are implemented as cascades of four 2nd-order IIR filters (this 8th-order digital filter corresponds to a
4th-order gammatone filter).

The approximated impulse response IR is defined as follow IR(t) = t3 exp(−2πbERB(f)t) cos(2πft) where
ERB(f) = 24.7 + 0.108f [Hz] is the equivalent rectangular bandwidth of the filter centered at f .

It comes from Slaney’s exact gammatone implementation (Slaney, M., 1993, “An Efficient Implementation of
the Patterson-Holdsworth Auditory Filter Bank”. Apple Computer Technical Report #35). The code is based on
Slaney’s Matlab implementation.

Initialised with arguments:

source Source of the filterbank.

cf List or array of center frequencies.

b=1.019 parameter which determines the bandwidth of the filters (and reciprocally the duration of its impulse
response). In particular, the bandwidth = b.ERB(cf), where ERB(cf) is the equivalent bandwidth at fre-
quency cf. The default value of b to a best fit (Patterson et al., 1992). b can either be a scalar and will be
the same for every channel or an array of the same length as cf.

erb_order=1, ear_Q=9.26449, min_bw=24.7 Parameters used to compute the ERB bandwidth.
ERB = ((cf/ear_Q)erb_order + min_bwerb_order)(1/erb_order). Their default values are the ones rec-
ommended in Glasberg and Moore, 1990.

cascade=None Specify 1 or 2 to use a cascade of 1 or 2 order 8 or 4 filters instead of 4 2nd order filters.
Note that this is more efficient but may induce numerical stability issues.

class brian.hears.ApproximateGammatone(source, cf, bandwidth, order=4)
Bank of approximate gammatone filters implemented as a cascade of order IIR gammatone filters.
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The filter is derived from the sampled version of the complex analog gammatone impulse response gγ(t) =
tγ−1(λeiηt)γ where γ corresponds to order, η defines the oscillation frequency cf, and λ defines the band-
width parameter.

The design is based on the Hohmann implementation as described in Hohmann, V., 2002, “Frequency analysis
and synthesis using a Gammatone filterbank”, Acta Acustica United with Acustica. The code is based on the
Matlab gammatone implementation from Meddis’ toolbox.

Initialised with arguments:

source Source of the filterbank.

cf List or array of center frequencies.

bandwidth List or array of filters bandwidth corresponding, one for each cf.

order=4 The number of 1st-order gammatone filters put in cascade, and therefore the order the resulting
gammatone filters.

class brian.hears.LogGammachirp(source, f, b=1.019, c=1, ncascades=4)
Bank of gammachirp filters with a logarithmic frequency sweep.

The approximated impulse response IR is defined as follows: IR(t) = t3e−2πbERB(f)t cos(2π(ft + c · ln(t))
where ERB(f) = 24.7 + 0.108f [Hz] is the equivalent rectangular bandwidth of the filter centered at f .

The implementation is a cascade of 4 2nd-order IIR gammatone filters followed by a cascade of ncascades 2nd-
order asymmetric compensation filters as introduced in Unoki et al. 2001, “Improvement of an IIR asymmetric
compensation gammachirp filter”.

Initialisation parameters:

source Source sound or filterbank.

f List or array of the sweep ending frequencies (finstantaneous = f + c/t).

b=1.019 Parameters which determine the duration of the impulse response. b can either be a scalar and will
be the same for every channel or an array with the same length as f.

c=1 The glide slope (or sweep rate) given in Hz/second. The trajectory of the instantaneous frequency towards
f is an upchirp when c<0 and a downchirp when c>0. c can either be a scalar and will be the same for
every channel or an array with the same length as f.

ncascades=4 Number of times the asymmetric compensation filter is put in cascade. The default value
comes from Unoki et al. 2001.

class brian.hears.LinearGammachirp(source, f, time_constant, c, phase=0)
Bank of gammachirp filters with linear frequency sweeps and gamma envelope as described in Wagner et al.
2009, “Auditory responses in the barn owl’s nucleus laminaris to clicks: impulse response and signal analysis
of neurophonic potential”, J. Neurophysiol.

The impulse response IR is defined as follow IR(t) = t3e−t/σ cos(2π(ft + c/2t2) + φ) where σ corresponds
to time_constant and φ to phase (see definition of parameters).

Those filters are implemented as FIR filters using truncated time representations of gammachirp functions
as the impulse response. The impulse responses, which need to have the same length for every channel,
have a duration of 15 times the biggest time constant. The length of the impulse response is therefore
15*max(time_constant)*sampling_rate. The impulse responses are normalized with respect to
the transmitted power, i.e. the rms of the filter taps is 1.

Initialisation parameters:

source Source sound or filterbank.

f List or array of the sweep starting frequencies (finstantaneous = f + ct).
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time_constant Determines the duration of the envelope and consequently the length of the impulse re-
sponse.

c=1 The glide slope (or sweep rate) given in Hz/second. The time-dependent instantaneous frequency is
f+c*t and is therefore going upward when c>0 and downward when c<0. c can either be a scalar
and will be the same for every channel or an array with the same length as f.

phase=0 Phase shift of the carrier.

Has attributes:

length_impulse_response Number of samples in the impulse responses.

impulse_response Array of shape (nchannels, length_impulse_response) with each row
being an impulse response for the corresponding channel.

class brian.hears.LinearGaborchirp(source, f, time_constant, c, phase=0)
Bank of gammachirp filters with linear frequency sweeps and gaussian envelope as described in Wagner et al.
2009, “Auditory responses in the barn owl’s nucleus laminaris to clicks: impulse response and signal analysis
of neurophonic potential”, J. Neurophysiol.

The impulse response IR is defined as follows: IR(t) = e−t/2σ
2

cos(2π(ft+ c/2t2)+φ), where σ corresponds
to time_constant and φ to phase (see definition of parameters).

These filters are implemented as FIR filters using truncated time representations of gammachirp functions
as the impulse response. The impulse responses, which need to have the same length for every channel,
have a duration of 12 times the biggest time constant. The length of the impulse response is therefore
12*max(time_constant)*sampling_rate. The envelope is a gaussian function (Gabor filter). The
impulse responses are normalized with respect to the transmitted power, i.e. the rms of the filter taps is 1.

Initialisation parameters:

source Source sound or filterbank.

f List or array of the sweep starting frequencies (finstantaneous = f + c ∗ t).

time_constant Determines the duration of the envelope and consequently the length of the impluse re-
sponse.

c=1 The glide slope (or sweep rate) given ins Hz/second. The time-dependent instantaneous frequency is
f+c*t and is therefore going upward when c>0 and downward when c<0. c can either be a scalar and
will be the same for every channel or an array with the same length as f.

phase=0 Phase shift of the carrier.

Has attributes:

length_impulse_response Number of sample in the impulse responses.

impulse_response Array of shape (nchannels, length_impulse_response) with each row
being an impulse response for the corresponding channel.

class brian.hears.IIRFilterbank(source, nchannels, passband, stopband, gpass, gstop, btype, ftype)
Filterbank of IIR filters. The filters can be low, high, bandstop or bandpass and be of type Elliptic, Butterworth,
Chebyshev etc. The passband and stopband can be scalars (for low or high pass) or pairs of parameters
(for stopband and passband) yielding similar filters for every channel. They can also be arrays of shape (1,
nchannels) for low and high pass or (2, nchannels) for stopband and passband yielding different filters
along channels. This class uses the scipy iirdesign function to generate filter coefficients for every channel.

See the documentation for scipy.signal.iirdesign for more details.

Initialisation parameters:

samplerate The sample rate in Hz.
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nchannels The number of channels in the bank

passband, stopband The edges of the pass and stop bands in Hz. For lowpass and highpass filters,
in the case of similar filters for each channel, they are scalars and passband<stopband for low pass
or stopband>passband for a highpass. For a bandpass or bandstop filter, in the case of similar fil-
ters for each channel, make passband and stopband a list with two elements, e.g. for a bandpass
have passband=[200*Hz, 500*Hz] and stopband=[100*Hz, 600*Hz]. passband and
stopband can also be arrays of shape (1, nchannels) for low and high pass or (2, nchannels)
for stopband and passband yielding different filters along channels.

gpass The maximum loss in the passband in dB. Can be a scalar or an array of length nchannels.

gstop The minimum attenuation in the stopband in dB. Can be a scalar or an array of length nchannels.

btype One of ‘low’, ‘high’, ‘bandpass’ or ‘bandstop’.

ftype The type of IIR filter to design: ‘ellip’ (elliptic), ‘butter’ (Butterworth), ‘cheby1’ (Chebyshev I),
‘cheby2’ (Chebyshev II), ‘bessel’ (Bessel).

class brian.hears.Butterworth(source, nchannels, order, fc, btype=’low’)
Filterbank of low, high, bandstop or bandpass Butterworth filters. The cut-off frequencies or the band frequen-
cies can either be the same for each channel or different along channels.

Initialisation parameters:

samplerate Sample rate.

nchannels Number of filters in the bank.

order Order of the filters.

fc Cutoff parameter(s) in Hz. For the case of a lowpass or highpass filterbank, fc is either a scalar (thus the
same value for all of the channels) or an array of length nchannels. For the case of a bandpass or
bandstop, fc is either a pair of scalar defining the bandpass or bandstop (thus the same values for all of
the channels) or an array of shape (2, nchannels) to define a pair for every channel.

btype One of ‘low’, ‘high’, ‘bandpass’ or ‘bandstop’.

class brian.hears.Cascade(source, filterbank, n)
Cascade of n times a linear filterbank.

Initialised with arguments:

source Source of the new filterbank.

filterbank Filterbank object to be put in cascade

n Number of cascades

class brian.hears.LowPass(source, fc)
Bank of 1st-order lowpass filters

The code is based on the code found in the Meddis toolbox. It was implemented here to be used in the DRNL
cochlear model implementation.

Initialised with arguments:

source Source of the filterbank.

fc Value, list or array (with length = number of channels) of cutoff frequencies.

class brian.hears.AsymmetricCompensation(source, f, b=1.019, c=1, ncascades=4)
Bank of asymmetric compensation filters.

Those filters are meant to be used in cascade with gammatone filters to approximate gammachirp filters (Unoki et
al., 2001, Improvement of an IIR asymmetric compensation gammachirp filter, Acoust. Sci. & Tech.). They are
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implemented a a cascade of low order filters. The code is based on the implementation found in the AIM-MAT
toolbox.

Initialised with arguments:

source Source of the filterbank.

f List or array of the cut off frequencies.

b=1.019 Determines the duration of the impulse response. Can either be a scalar and will be the same for
every channel or an array with the same length as cf.

c=1 The glide slope when this filter is used to implement a gammachirp. Can either be a scalar and will be the
same for every channel or an array with the same length as cf.

ncascades=4 The number of time the basic filter is put in cascade.

8.21.4 Auditory model library

class brian.hears.DRNL(source, cf, type=’human’, param={})
Implementation of the dual resonance nonlinear (DRNL) filter as described in Lopez-Paveda, E. and Meddis,
R., “A human nonlinear cochlear filterbank”, JASA 2001.

The entire pathway consists of the sum of a linear and a nonlinear pathway.

The linear path consists of a bank of bandpass filters (second order gammatone), a low pass function, and a
gain/attenuation factor, g, in a cascade.

The nonlinear path is a cascade consisting of a bank of gammatone filters, a compression function, a second
bank of gammatone filters, and a low pass function, in that order.

Initialised with arguments:

source Source of the cochlear model.

cf List or array of center frequencies.

type defines the parameters set corresponding to a certain fit. It can be either:

type=’human’ The parameters come from Lopez-Paveda, E. and Meddis, R.., “A human nonlinear
cochlear filterbank”, JASA 2001.

type =’guinea pig’ The parameters come from Summer et al., “A nonlinear filter-bank model of
the guinea-pig cochlear nerve: Rate responses”, JASA 2003.

param Dictionary used to overwrite the default parameters given in the original papers.

The possible parameters to change and their default values for humans (see Lopez-Paveda, E. and Meddis, R.,”A
human nonlinear cochlear filterbank”, JASA 2001. for notation) are:

param[’stape_scale’]=0.00014
param[’order_linear’]=3
param[’order_nonlinear’]=3

from there on the parameters are given in the form x = 10p0+m log10(cf) where cf is the center frequency:

param[’cf_lin_p0’]=-0.067
param[’cf_lin_m’]=1.016
param[’bw_lin_p0’]=0.037
param[’bw_lin_m’]=0.785
param[’cf_nl_p0’]=-0.052
param[’cf_nl_m’]=1.016
param[’bw_nl_p0’]=-0.031
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param[’bw_nl_m’]=0.774
param[’a_p0’]=1.402
param[’a_m’]=0.819
param[’b_p0’]=1.619
param[’b_m’]=-0.818
param[’c_p0’]=-0.602
param[’c_m’]=0
param[’g_p0’]=4.2
param[’g_m’]=0.48
param[’lp_lin_cutoff_p0’]=-0.067
param[’lp_lin_cutoff_m’]=1.016
param[’lp_nl_cutoff_p0’]=-0.052
param[’lp_nl_cutoff_m’]=1.016

class brian.hears.DCGC(source, cf, update_interval=1, param={})
The compressive gammachirp auditory filter as described in Irino, T. and Patterson R., “A compressive gam-
machirp auditory filter for both physiological and psychophysical data”, JASA 2001.

Technical implementation details and notation can be found in Irino, T. and Patterson R., “A Dynamic Compres-
sive Gammachirp Auditory Filterbank”, IEEE Trans Audio Speech Lang Processing.

The model consists of a control pathway and a signal pathway in parallel.

The control pathway consists of a bank of bandpass filters followed by a bank of highpass filters (this chain
yields a bank of gammachirp filters).

The signal pathway consist of a bank of fix bandpass filters followed by a bank of highpass filters with variable
cutoff frequencies (this chain yields a bank of gammachirp filters with a level-dependent bandwidth). The
highpass filters of the signal pathway are controlled by the output levels of the two stages of the control pathway.

Initialised with arguments:

source Source of the cochlear model.

cf List or array of center frequencies.

update_interval Interval in samples controlling how often the band pass filter of the signal pathway is
updated. Smaller values are more accurate, but give longer computation times.

param Dictionary used to overwrite the default parameters given in the original paper.

The possible parameters to change and their default values (see Irino, T. and Patterson R., “A Dynamic Com-
pressive Gammachirp Auditory Filterbank”, IEEE Trans Audio Speech Lang Processing) are:

param[’b1’] = 1.81
param[’c1’] = -2.96
param[’b2’] = 2.17
param[’c2’] = 2.2
param[’decay_tcst’] = .5*ms
param[’lev_weight’] = .5
param[’level_ref’] = 50.
param[’level_pwr1’] = 1.5
param[’level_pwr2’] = .5
param[’RMStoSPL’] = 30.
param[’frat0’] = .2330
param[’frat1’] = .005
param[’lct_ERB’] = 1.5 #value of the shift in ERB frequencies
param[’frat_control’] = 1.08
param[’order_gc’]=4
param[’ERBrate’]= 21.4*log10(4.37*cf/1000+1) # cf is the center frequency
param[’ERBwidth’]= 24.7*(4.37*cf/1000 + 1)
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class brian.hears.MiddleEar(source, gain=1, **kwds)
Implements the middle ear model from Tan & Carney (2003) (linear filter with two pole pairs and one double
zero). The gain is normalized for the response of the analog filter at 1000Hz as in the model of Tan & Carney
(their actual C code does however result in a slightly different normalization, the difference in overall level is
about 0.33dB (to get exactly the same output as in their model, set the gain parameter to 0.962512703689).

Tan, Q., and L. H. Carney. “A Phenomenological Model for the Responses of Auditory-nerve Fibers. II.
Nonlinear Tuning with a Frequency Glide”. The Journal of the Acoustical Society of America 114 (2003):
2007.

class brian.hears.TanCarney(source, cf, update_interval=1, param=None)
Class implementing the nonlinear auditory filterbank model as described in Tan, G. and Carney, L., “A phe-
nomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide”,
JASA 2003.

The model consists of a control path and a signal path. The control path controls both its own bandwidth via a
feedback loop and also the bandwidth of the signal path.

Initialised with arguments:

source Source of the cochlear model.

cf List or array of center frequencies.

update_interval Interval in samples controlling how often the band pass filter of the signal pathway is
updated. Smaller values are more accurate but increase the computation time.

param Dictionary used to overwrite the default parameters given in the original paper.

class brian.hears.ZhangSynapse(source, CF, n_per_channel=1, params=None)
A FilterbankGroup that represents an IHC-AN synapse according to the Zhang et al. (2001) model. The source
should be a filterbank, producing V_ihc (e.g. TanCarney). CF specifies the characteristic frequencies of the AN
fibers. params overwrites any parameters values given in the publication.

The group emits spikes according to a time-varying Poisson process with absolute and relative refractoriness
(probability of spiking is given by state variable R). The continuous probability of spiking without refractoriness
is available in the state variable s.

The n_per_channel argument can be used to generate multiple spike trains for every channel.

If all you need is the state variable s, you can use the class ZhangSynapseRate instead which does not simulate
the spike-generating Poisson process.

For details see: Zhang, X., M. G. Heinz, I. C. Bruce, and L. H. Carney. “A Phenomenological Model for the
Responses of Auditory-nerve Fibers: I. Nonlinear Tuning with Compression and Suppression”. The Journal of
the Acoustical Society of America 109 (2001): 648.

8.21.5 Filterbank group

class brian.hears.FilterbankGroup(filterbank, targetvar, *args, **kwds)
Allows a Filterbank object to be used as a NeuronGroup

Initialised as a standard NeuronGroup object, but with two additional arguments at the beginning, and no
N (number of neurons) argument. The number of neurons in the group will be the number of channels in the
filterbank. (TODO: add reference to interleave/serial channel stuff here.)

filterbank The Filterbank object to be used by the group. In fact, any Bufferable object can be used.

targetvar The target variable to put the filterbank output into.

One additional keyword is available beyond that of NeuronGroup:
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buffersize=32 The size of the buffered segments to fetch each time. The efficiency depends on this in an
unpredictable way, larger values mean more time spent in optimised code, but are worse for the cache. In
many cases, the default value is a good tradeoff. Values can be given as a number of samples, or a length
of time in seconds.

Note that if you specify your own Clock, it should have 1/dt=samplerate.

8.21.6 Functions

brian.hears.erbspace(*args, **kwds)
Returns the centre frequencies on an ERB scale.

low, high Lower and upper frequencies

N Number of channels

earQ=9.26449, minBW=24.7, order=1 Default Glasberg and Moore parameters.

brian.hears.asymmetric_compensation_coeffs(samplerate, fr, filt_b, filt_a, b, c, p0, p1, p2, p3,
p4)

This function is used to generated the coefficient of the asymmetric compensation filter used for the gammachirp
implementation.

8.21.7 Plotting

brian.hears.log_frequency_xaxis_labels(ax=None, freqs=None)
Sets tick positions for log-scale frequency x-axis at sensible locations.

Also uses scalar representation rather than exponential (i.e. 100 rather than 10^2).

ax=None The axis to set, or uses gca() if None.

freqs=None Override the default frequency locations with your preferred tick locations.

See also: log_frequency_yaxis_labels().

Note: with log scaled axes, it can be useful to call axis(’tight’) before setting the ticks.

brian.hears.log_frequency_yaxis_labels(ax=None, freqs=None)
Sets tick positions for log-scale frequency x-axis at sensible locations.

Also uses scalar representation rather than exponential (i.e. 100 rather than 10^2).

ax=None The axis to set, or uses gca() if None.

freqs=None Override the default frequency locations with your preferred tick locations.

See also: log_frequency_yaxis_labels().

Note: with log scaled axes, it can be useful to call axis(’tight’) before setting the ticks.

8.21.8 HRTFs

class brian.hears.HRTF(hrir_l, hrir_r=None)
Head related transfer function.

Attributes

impulse_response The pair of impulse responses (as stereo Sound objects)
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fir The impulse responses in a format suitable for using with FIRFilterbank (the transpose of
impulse_response).

left, right The two HRTFs (mono Sound objects)

samplerate The sample rate of the HRTFs.

Methods

apply(sound)
Returns a stereo Sound object formed by applying the pair of HRTFs to the mono sound input. Equiva-
lently, you can write hrtf(sound) for hrtf an HRTF object.

filterbank(source, **kwds)
Returns an FIRFilterbank object that can be used to apply the HRTF as part of a chain of filterbanks.

You can get the number of samples in the impulse response with len(hrtf).

class brian.hears.HRTFSet(data, samplerate, coordinates)
A collection of HRTFs, typically for a single individual.

Normally this object is created automatically by an HRTFDatabase.

Attributes

hrtf A list of HRTF objects for each index.

num_indices The number of HRTF locations. You can also use len(hrtfset).

num_samples The sample length of each HRTF.

fir_serial, fir_interleaved The impulse responses in a format suitable for using with
FIRFilterbank, in serial (LLLLL...RRRRR....) or interleaved (LRLRLR...).

Methods

subset(condition)
Generates the subset of the set of HRTFs whose coordinates satisfy the condition. This should be
one of: a boolean array of length the number of HRTFs in the set, with values of True/False to indicate
if the corresponding HRTF should be included or not; an integer array with the indices of the HRTFs to
keep; or a function whose argument names are names of the parameters of the coordinate system, e.g.
condition=lambda azim:azim<pi/2.

filterbank(source, interleaved=False, **kwds)
Returns an FIRFilterbank object which applies all of the HRTFs in the set. If
interleaved=False then the channels are arranged in the order LLLL...RRRR..., otherwise they
are arranged in the order LRLRLR....

You can access an HRTF by index via hrtfset[index], or by its coordinates via
hrtfset(coord1=val1, coord2=val2).

Initialisation

data An array of shape (2, num_indices, num_samples) where data[0,:,:] is the left ear and data[1,:,:] is the
right ear, num_indices is the number of HRTFs for each ear, and num_samples is the length of the HRTF.

samplerate The sample rate for the HRTFs (should have units of Hz).

coordinates A record array of length num_indices giving the coordinates of each HRTF. You can use
make_coordinates() to help with this.

class brian.hears.HRTFDatabase(samplerate=None)
Base class for databases of HRTFs
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Should have an attribute ‘subjects’ giving a list of available subjects, and a method
load_subject(subject) which returns an HRTFSet for that subject.

The initialiser should take (optional) keywords:

samplerate The intended samplerate (resampling will be used if it is wrong). If left unset, the natural
samplerate of the data set will be used.

brian.hears.make_coordinates(**kwds)
Creates a numpy record array from the keywords passed to the function. Each keyword/value pair should be the
name of the coordinate the array of values of that coordinate for each location. Returns a numpy record array.
For example:

coords = make_coordinates(azimuth=[0, 30, 60, 0, 30, 60],
elevation=[0, 0, 0, 30, 30, 30])

print coords[’azimuth’]

class brian.hears.IRCAM_LISTEN(basedir, compensated=False, samplerate=None)
HRTFDatabase for the IRCAM LISTEN public HRTF database.

For details on the database, see the website.

The database object can be initialised with the following arguments:

basedir The directory where the database has been downloaded and extracted, e.g. r’D:\HRTF\IRCAM’.
Multiple directories in a list can be provided as well (e.g IRCAM and IRCAM New).

compensated=False Whether to use the raw or compensated impulse responses.

samplerate=None If specified, you can resample the impulse responses to a different samplerate, otherwise
uses the default 44.1 kHz.

The coordinates are pairs (azim, elev) where azim ranges from 0 to 345 degrees in steps of 15 degrees,
and elev ranges from -45 to 90 in steps of 15 degrees. After loading the database, the attribute ‘subjects’ gives
all the subjects number that were detected as installed.

Obtaining the database

The database can be downloaded here. Each subject archive should be extracted to a folder (e.g. IRCAM) with
the names of the subject, e.g. IRCAM/IRC_1002, etc.

class brian.hears.HeadlessDatabase(n=None, azim_max=1.5707963267948966, diame-
ter=0.22308 * metre, itd=None, samplerate=None, frac-
tional_itds=False)

Database for creating HRTFSet with artificial interaural time-differences

Initialisation keywords:

n, azim_max, diameter Specify the ITDs for two ears separated by distance diameter with no head.
ITDs corresponding to n angles equally spaced between -azim_max and azim_max are used. The
default diameter is that which gives the maximum ITD as 650 microseconds. The ITDs are computed
with the formula diameter*sin(azim)/speed_of_sound_in_air. In this case, the generated
HRTFSet will have coordinates of azim and itd.

itd Instead of specifying the keywords above, just give the ITDs directly. In this case, the generated HRTFSet
will have coordinates of itd only.

fractional_itds=False Set this to True to allow ITDs with a fractional multiple of the timestep
1/samplerate. Note that the filters used to do this are not perfect and so this will introduce a small
amount of numerical error, and so shouldn’t be used unless this level of timing precision is required. See
FractionalDelay for more details.

To get the HRTFSet, the simplest thing to do is just:
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hrtfset = HeadlessDatabase(13).load_subject()

The generated ITDs can be returned using the itd attribute of the HeadlessDatabase object.

If fractional_itds=False then Note that the delays induced in the left and right channels are not sym-
metric as making them so wastes half the samplerate (if the delay to the left channel is itd/2 and the delay to the
right channel is -itd/2). Instead, for each channel either the left channel delay is 0 and the right channel delay is
-itd (if itd<0) or the left channel delay is itd and the right channel delay is 0 (if itd>0).

If fractional_itds=True then delays in the left and right channels will be symmetric around a global
offset of delay_offset.

8.21.9 Base classes

Useful for understanding more about the internals.

class brian.hears.Bufferable
Base class for Brian.hears classes

Defines a buffering interface of two methods:

buffer_init() Initialise the buffer, should set the time pointer to zero and do any other initialisation that
the object needs.

buffer_fetch(start, end) Fetch the next samples start:end from the buffer. Value returned
should be an array of shape (end-start, nchannels). Can throw an IndexError exception
if it is outside the possible range.

In addition, bufferable objects should define attributes:

nchannels The number of channels in the buffer.

samplerate The sample rate in Hz.

By default, the class will define a default buffering mechanism which can easily be extended. To extend the
default buffering mechanism, simply implement the method:

buffer_fetch_next(samples) Returns the next samples from the buffer.

The default methods for buffer_init() and buffer_fetch() will define a buffer cache which will
get larger if it needs to to accommodate a buffer_fetch(start, end) where end-start is larger
than the current cache. If the filterbank has a minimum_buffer_size attribute, the internal cache will
always have at least this size, and the buffer_fetch_next(samples) method will always get called
with samples>=minimum_buffer_size. This can be useful to ensure that the buffering is done ef-
ficiently internally, even if the user request buffered chunks that are too small. If the filterbank has a
maximum_buffer_size attribute then buffer_fetch_next(samples) will always be called with
samples<=maximum_buffer_size - this can be useful for either memory consumption reasons or for
implementing time varying filters that need to update on a shorter time window than the overall buffer size.

The following attributes will automatically be maintained:

self.cached_buffer_start, self.cached_buffer_end The start and end of the cached segment
of the buffer

self.cached_buffer_output An array of shape ((cached_buffer_end-cached_buffer_start,
nchannels) with the current cached segment of the buffer. Note that this array can change size.

class brian.hears.Filterbank(source)
Generalised filterbank object

Documentation common to all filterbanks
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Filterbanks all share a few basic attributes:

source
The source of the filterbank, a Bufferable object, e.g. another Filterbank or a Sound. It can also
be a tuple of sources. Can be changed after the object is created, although note that for some filterbanks
this may cause problems if they do make assumptions about the input based on the first source object they
were passed. If this is causing problems, you can insert a dummy filterbank (DoNothingFilterbank)
which is guaranteed to work if you change the source.

nchannels
The number of channels.

samplerate
The sample rate.

duration
The duration of the filterbank. If it is not specified by the user, it is computed by finding the maxi-
mum of its source durations. If these are not specified a KeyError will be raised (for example, using
OnlineSound as a source).

To process the output of a filterbank, the following method can be used:

process(func=None, duration=None, buffersize=32)
Returns the output of the filterbank for the given duration.

func If a function is specified, it should be a function of one or two arguments that will be called on each
filtered buffered segment (of shape (buffersize, nchannels) in order. If the function has one
argument, the argument should be buffered segment. If it has two arguments, the second argument is
the value returned by the previous application of the function (or 0 for the first application). In this
case, the method will return the final value returned by the function. See example below.

duration=None The length of time (in seconds) or number of samples to process. If no func is
specified, the method will return an array of shape (duration, nchannels) with the filtered
outputs. Note that in many cases, this will be too large to fit in memory, in which you will want to
process the filtered outputs online, by providing a function func (see example below). If no duration
is specified, the maximum duration of the inputs to the filterbank will be used, or an error raised if
they do not have durations (e.g. in the case of OnlineSound).

buffersize=32 The size of the buffered segments to fetch, as a length of time or number of samples.
32 samples typically gives reasonably good performance.

For example, to compute the RMS of each channel in a filterbank, you would do:

def sum_of_squares(input, running_sum_of_squares):
return running_sum_of_squares+sum(input**2, axis=0)

rms = sqrt(fb.process(sum_of_squares)/nsamples)

Alternatively, the buffer interface can be used, which is described in more detail below.

Filterbank also defines arithmetical operations for +, -, *, / where the other operand can be a filterbank or scalar.

Details on the class

This class is a base class not designed to be instantiated. A Filterbank object should define the interface of
Bufferable, as well as defining a source attribute. This is normally a Bufferable object, but could be
an iterable of sources (for example, for filterbanks that mix or add multiple inputs).

The buffer_fetch_next(samples) method has a default implementation that fetches the next input,
and calls the buffer_apply(input) method on it, which can be overridden by a derived class. This is
typically the easiest way to implement a new filterbank. Filterbanks with multiple sources will need to override
this default implementation.
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There is a default __init__ method that can be called by a derived class that sets the source, nchannels
and samplerate from that of the source object. For multiple sources, the default implementation will
check that each source has the same number of channels and samplerate and will raise an error if not.

There is a default buffer_init() method that calls buffer_init() on the source (or list of sources).

Example of deriving a class

The following class takes N input channels and sums them to a single output channel:

class AccumulateFilterbank(Filterbank):
def __init__(self, source):

Filterbank.__init__(self, source)
self.nchannels = 1

def buffer_apply(self, input):
return reshape(sum(input, axis=1), (input.shape[0], 1))

Note that the default Filterbank.__init__ will set the number of channels equal to the number of source
channels, but we want to change it to have a single output channel. We use the buffer_apply method which
automatically handles the efficient cacheing of the buffer for us. The method receives the array input which
has shape (bufsize, nchannels) and sums over the channels (axis=1). It’s important to reshape the
output so that it has shape (bufsize, outputnchannels) so that it can be used as the input to subsequent
filterbanks.

class brian.hears.BaseSound
Base class for Sound and OnlineSound

class brian.hears.OnlineSound

8.21.10 Options

There are several relevant global options for Brian hears. In particular, activating scipy Weave support with the
useweave=True will give considerably faster linear filtering. See Preferences and Compiled code for more details.

8.21.11 Class diagram
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LinearFilterbank

Cascade Gammatone LogGammachirp AsymmetricCompensation Butterworth IIRFilterbank ApproximateGammatone
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ndarray

8.22 Magic in Brian

brian.magic_return(f)
Decorator to ensure that the returned object from a function is recognised by magic functions

Usage example:

@magic_return
def f():

return PulsePacket(50*ms, 100, 10*ms)
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Explanation

Normally, code like the following wouldn’t work:

def f():
return PulsePacket(50*ms, 100, 10*ms)

pp = f()
M = SpikeMonitor(pp)
run(100*ms)
raster_plot()
show()

The reason is that the magic function run() only recognises objects created in the same execution frame that
it is run from. The magic_return() decorator corrects this, it registers the return value of a function with
the magic module. The following code will work as expected:

@magic_return
def f():

return PulsePacket(50*ms, 100, 10*ms)
pp = f()
M = SpikeMonitor(pp)
run(100*ms)
raster_plot()
show()

Technical details

The magic_return() function uses magic_register() with the default level=1 on just the object
returned by a function. See details for magic_register().

brian.magic_register(*args, **kwds)
Declare that a magically tracked object should be put in a particular frame

Standard usage

If A is a tracked class (derived from InstanceTracker), then the following wouldn’t work:

def f():
x = A(’x’)
return x

objs = f()
print get_instances(A,0)[0]

Instead you write:

def f():
x = A(’x’)
magic_register(x)
return x

objs = f()
print get_instances(A,0)[0]

Definition

Call as:

magic_register(...[,level=1])

The ... can be any sequence of tracked objects or containers of tracked objects, and each tracked object will
have its instance id (the execution frame in which it was created) set to that of its parent (or to its parent at the
given level). This is equivalent to calling:
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x.set_instance_id(level=level)

For each object x passed to magic_register().

See Also:

Projects with multiple files or functions Describes difficulties and solutions for using magic functions on projects
with multiple files or functions.

8.23 Tests

brian.run_all_tests()
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NINE

TYPICAL TASKS

TODO: typical things you want to achieve in running your simulation, and how to go about doing them.

9.1 Projects with multiple files or functions

Brian works with the minimal hassle if the whole of your code is in a single Python module (.py file). This is fine
when learning Brian or for quick projects, but for larger, more realistic projects with the source code separated into
multiple files, there are some small issues you need to be aware of. These issues essentially revolve around the use of
the ‘’magic” functions run(), etc. The way these functions work is to look for objects of the required type that have
been instantiated (created) in the same ‘’execution frame” as the run() function. In a small script, that is normally
just any objects that have been defined in that script. However, if you define objects in a different module, or in a
function, then the magic functions won’t be able to find them.

There are three main approaches then to splitting code over multiple files (or functions).

9.1.1 Use the Network object explicitly

The magic run() function works by creating a Network object automatically, and then running that network.
Instead of doing this automatically, you can create your own Network object. Rather than writing something like:

group1 = ...
group2 = ...
C = Connection(group1,group2)
...
run(1*second)

You do this:

group1 = ...
group2 = ...
C = Connection(group1, group2)
...
net = Network(group1, group2, C)
net.run(1*second)

In other words, you explicitly say which objects are in your network. Note that any NeuronGroup, Connection,
Monitor or function decorated with network_operation() should be included in the Network. See the
documentation for Network for more details.

This is the preferred solution for almost all cases. You may want to use either of the following two solutions if you
think your code may be used by someone else, or if you want to make it into an extension to Brian.
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9.1.2 Use the magic_return() decorator or magic_register() function

The magic_return() decorator is used as follows:

@magic_return
def f():

...
return obj

Any object returned by a function decorated by magic_return() will be considered to have been instantiated in
the execution frame that called the function. In other words, the magic functions will find that object even though it
was really instantiated in a different execution frame.

In more complicated scenarios, you may want to use the magic_register() function. For example:

def f():
...
magic_register(obj1, obj2)
return (obj1, obj2)

This does the same thing as magic_return() but can be used with multiple objects. Also, you can specify a
level (see documentation on magic_register() for more details).

9.1.3 Use derived classes

Rather than writing a function which returns an object, you could instead write a derived class of the object type. So,
suppose you wanted to have an object that emitted N equally spaced spikes, with an interval dt between them, you
could use the SpikeGeneratorGroup class as follows:

@magic_return
def equally_spaced_spike_group(N, dt):

spikes = [(0,i*dt) for i in range(N)]
return SpikeGeneratorGroup(spikes)

Or alternatively, you could derive a class from SpikeGeneratorGroup as follows:

class EquallySpacedSpikeGroup(SpikeGeneratorGroup):
def __init__(self, N, t):

spikes = [(0,i*dt) for i in range(N)]
SpikeGeneratorGroup.__init__(self, spikes)

You would use these objects in the following ways:

obj1 = equally_spaced_spike_group(100, 10*ms)
obj2 = EquallySpacedSpikeGroup(100, 10*ms)

For simple examples like the one above, there’s no particular benefit to using derived classes, but using derived classes
allows you to add methods to your derived class for example, which might be useful. For more experienced Python
programmers, or those who are thinking about making their code into an extension for Brian, this is probably the
preferred approach.

Finally, it may be useful to note that there is a protocol for one object to ‘contain’ other objects. That is, suppose you
want to have an object that can be treated as a simple NeuronGroup by the person using it, but actually instantiates
several objects (perhaps internal Connection objects). These objects need to be added to the Network object in
order for them to be run with the simulation, but the user shouldn’t need to have to know about them. To this end, for
any object added to a Network, if it has an attribute contained_objects, then any objects in that container will
also be added to the network.
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TEN

EXPERIMENTAL FEATURES

The following features are located in the experimental package inside Brian, and are subject to change without
notice. The most likely changes are ones of syntax and naming, although functionality may also be subject to change.

10.1 Code generation

Brian has support for automatic generation of C code, detailed in Compiled code. We also have experimental support
for C code generation more widely, implementing the algorithms described in Goodman (2010). This support can be
activated using the usecodegen*, usenewpropagate and usecstdp global preferences (see Preferences).

Note that not all code will run without problems using code generation yet, but in most cases it will and speed
improvements can be very substantial, especially for STDP.

10.1.1 References

• Goodman DFM (2010). Code Generation: A Strategy for Neural Network Simulators. Neuroinformatics 8, no.
3 (9). doi:10.1007/s12021-010-9082-x. [pdf]

10.2 GPU/CUDA

Brian has some experimental support for doing numerical integration only using GPUs, using the PyCUDA package.

Note that only numerical integration is done on the GPU, which means that variables that can be altered on the CPU
(via synapses or user operations) need to be copied to and from the GPU each time step, as well as variables that are
used for thresholding and reset operations. This creates a memory bandwidth bottleneck, which means that for the
moment the GPU code is only useful for complicated neuron models such as Hodgkin-Huxley type neurons (although
in this case it can lead to very substantial speed improvements).

class brian.experimental.cuda.GPUNeuronGroup(N, model, threshold=None, reset=NoReset(),
init=None, refractory=0.0 * second, level=0,
clock=None, order=1, implicit=False,
unit_checking=True, max_delay=0.0 *
second, compile=False, freeze=False,
method=None, precision=’double’,
maxblocksize=512, forcesync=False, page-
locked_mem=True, gpu_to_cpu_vars=None,
cpu_to_gpu_vars=None)

Neuron group which performs numerical integration on the GPU.
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Warning: This class is still experimental, not supported and subject to change in future versions of Brian.

Initialised with arguments as for NeuronGroup and additionally:

precision=’double’ The GPU scalar precision to use, older models can only use
precision=’float’.

maxblocksize=512 If GPU compilation fails, reduce this value.

forcesync=False Whether or not to force copying of state variables to and from the GPU each time
step. This is slow, so it is better to specify precisely which variables should be copied to and from us-
ing gpu_to_cpu_vars and cpu_to_gpu_vars.

pagelocked_mem=True Whether to store state variables in pagelocked memory on the CPU, which makes
copying data to/from the GPU twice as fast.

cpu_to_gpu_vars=None, gpu_to_cpu_vars=None Which variables should be copied each time step
from the CPU to the GPU (before state update) and from the GPU to the CPU (after state update).

The point of the copying of variables to and from the GPU is that the GPU maintains a separate memory from
the CPU, and so changes made on either the CPU or GPU won’t automatically be reflected in the other. Since
only numerical integration is done on the GPU, any state variable that is modified by incoming synapses, for
example, should be copied to and from the GPU each time step. In addition, any variables used for thresholding
or resetting need to be appropriately copied (GPU->CPU for thresholding, and both for resetting).

10.3 Multilinear state updater

class brian.experimental.multilinearstateupdater.MultiLinearNeuronGroup(eqs,
subs,
clock=None,
level=0,
**kwds)

Make a NeuronGroup with a linear differential equation for each neuron

You give a single set of differential equations with parameters, the variables you want substituted should be
defined as parameters in the equations, but they will not be treated as parameters, instead they will be substituted.
You also pass a list of variables to have their values substituted, and these names should exist in the namespace
initialising the MultiLinearNeuronGroup.

Arguments:

eqs should be the equations, and must be a string not an Equations object.

subs A list of variables to be substituted with values.

level How many levels up to look for the equations’ namespace.

clock If you want.

kwds Any additonal arguments to pass to NeuronGroup init.

Example:

eqs = ’’’
dv/dt = k*v/(1*second) : 1
dw/dt = k*w/(1*second) : 1
k : 1
’’’
k = array([-1,-2,-3])
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subs = [’k’]
G = MultiLinearNeuronGroup(eqs, subs)
G.v = 1
G.w = 0
M = StateMonitor(G, ’v’, record=True)
run(1*second)
for i in range(len(G)):

plot(M.times, M[i])
show()

10.4 Realtime Connection Monitor

You can visual weight matrices in realtime, using the PyGame package with the following class.

class brian.experimental.realtime_monitor.RealtimeConnectionMonitor(C,
size=None,
scal-
ing=’fast’,
wmin=None,
wmax=None,
clock=None,
cmap=<matplotlib.colors.LinearSegmentedColormap
instance at
0x370bf80>)

Realtime monitoring of weight matrix

Short docs:

C Connection to monitor

size Dimensions (width, height) of output window, leave as None to use C.W.shape.

scaling If output window dimensions are different to connection matrix, scaling is used, options are ’fast’
for no interpolation, or ’smooth’ for (slower) smooth interpolation.

wmin, wmax Minimum and maximum weight matrix values, if left to None then the min/max of the weight
matrix at each moment is used (and this scaling can change over time).

clock Leave to None for an update every 100ms.

cmap Colour map to use, black and white by default. Get other values from matplotlib.cm.*.

Note that this class uses PyGame and due to a limitation with pygame, there can be only one window using it.
Other options are being considered.

10.5 Automatic Model Documentation

class brian.experimental.model_documentation.DocumentWriter
Base class for documenting a network. Already takes care of assigning labels to objects if none are given.

document_connections(connections)
Document the connections of the network (including SpikeMonitor etc. as they are modeled as
Connection objects).
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document_group(group)
Document a single NeuronGroup group. Will normally be called for every group by
document_groups().

document_groups(groups)
Document all NeuronGroup groups. Should normally call document_group() for every group.

document_network(net=None, labels=None, sim=True, groups=True, connections=True, opera-
tions=True, graph_connections=False)

Documents the network net, if not network is given, a MagicNetwork is automatically created and
documented, i.e. if you are running scripts without any explicit network (you use run(...) instead of
net.run(...)), you can simply call writer.document_network().

document_operation(operation)
Document a single NetworkOperation operation. Should normally be called by
document_operations() for every operation.

document_operations(operations)
Document all NetworkOperation operations (including StateMonitor etc. as they are modeled as
NetworkOperation objects). Should normally call document_operation() for every operation.

document_sim(network)
Document some general properties of the network, e.g. the timestep used in the simulation.

graph_connections(connections, groups)
Draw a graph visualizing the connection structure of the network.

intro()
Is called before any other output function, useful for the start of an HTML or LaTeX document.

outro()
Is called after all other output function, useful for the end of an HTML or LaTeX document.

static to_sympy_expression(eq_string)
Simple helper function for converting an Equation string eq_string (only the right hand side of an equation)
into a sympy expression by calling x = Symbol(‘x’) for every variable x in the equation.

class brian.experimental.model_documentation.TextDocumentWriter(**kwargs)
Documents the network by printing to stdout, uses sympy for formatting the equations (including nice Unicode
symbols)

class brian.experimental.model_documentation.LaTeXDocumentWriter(**kwargs)
Documents the network by printing LaTeX code to stdout. Prints a full document (i.e. including preamble etc.).
The resulting LaTeX file needs the amsmath package.

Note that if you use the graph_connections=True option, you additionally need the tikz and dot2texi packages
(part of texlive-core and texlive-pictures on Linux systems) and the dot2tex tool. To make the conversion from
dot code to LaTeX automatically happen on document creation you have to pass the –shell-escape option to
your LaTeX call, e.g. pdflatex –shell-escape network_doc.tex

static format_equation(lhs, rhs, unit)
Helper function to convert an equation consisting of two strings for the left respectively the right hand side
of an equation (lhs and rhs) and a Brian Unit unit into a LaTeX expression aligning on the equality sign
for amsmath‘s align environment.

static latex_equation(eq_string)
Helper function to convert the right hand side of an equation string eq_string to a LaTeX expression (not a
full equation in LaTeX terms) using sympy.

static latex_equations(eqs)
Convert Brian equations (either a – possibly multi-line – string or an Equation object) eqs into a LaTeX
equation using amsmath‘s align environment.
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brian.experimental.model_documentation.document_network(net=None, output=’text’,
**kwargs)

Convenience method for documenting a network without having to construct a DocumentWriter object first.

If no network net is given, a MagicNetwork is automatically created and documented. The output argument
should be either text (the default) or latex. Any further keyword arguments are passed on to the respective
DocumentWriter.

brian.experimental.model_documentation.labels_from_namespace(namespace)
Creates a labels dictionary that can be handed over to the document_network from a given namespace. Would
typically be called like this: net.document_network(labels=labels_from_namespace(locals())) This allows doc-
ument_network to use the variable names used in the Python code as the short labels, making it easier to link the
model description and the actual code.
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CHAPTER

ELEVEN

DEVELOPER’S GUIDE

This section is intended as a guide to how Brian functions internally for people developing Brian itself, or extensions
to Brian. It may also be of some interest to others wishing to better understand how Brian works internally.

11.1 Guidelines

The basic principles of developing Brian are:

1. For the user, the emphasis is on making the package flexible, readable and easy to use. See the paper “The Brian
simulator” in Frontiers in Neuroscience for more details.

2. For the developer, the emphasis is on keeping the package maintainable by a small number of people. To this
end, we use stable, well maintained, existing open source packages whenever possible, rather than writing our
own code.

Coding conventions. We use the PEP-8 coding conventions for our code. Syntax is chosen as much as possible from
the user point of view, to reflect the concepts as directly as possible. Ideally, a Brian script should be readable by
someone who doesn’t know Python or Brian, although this isn’t always possible. Function and class names should be
explicit rather than abbreviated.

Documentation. It is very important to maintain documentation. We use the Sphinx documentation generator tools.
The documentation is all hand written. Sphinx source files are stored in the docs_sphinx folder in the repository,
and compiled HTML files are stored in the docs folder. Most of the documentation is stored directly in the Sphinx
source text files, but reference documentation for important Brian classes and functions are kept in the documentation
strings of those classes themselves. This is automatically pulled from these classes for the reference manual section of
the documentation. The idea is to keep the definitive reference documentation near the code that it documents, serving
as both a comment for the code itself, and to keep the documentation up to date with the code.

In the code, every class or function should start with an explanation of what it does, unless it is trivial. A good idea
is to use explicit names rather than abbreviations, so that you instantly understand what it is about. Inside a function,
important chunks should also be commented.

Testing. Brian uses the nose package for its testing framework. Tests are stored in the brian/tests directory.
Tests associated to a Brian module are stored in brian/tests/testinterface and tests of the mathematical
correctness of Brian’s algorithms are stored in brian/tests/testcorrectness.

Errors. It is a good idea to start an important function (e.g. object initialisation) with a check of the arguments, and
possibly issue errors. This way errors are more understandable by the user.

Enhancements. Brian uses a system parallel to the Python Enhancement Proposals (PEPs) system for Python, called
Brian Enhancement Proposals (BEPs). These are stored in dev/BEPs. Ideas for new functionality for Brian are put
in here for comment and discussion. A BEP typically includes:

• How the feature will look from user point of view, with example scripts.
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• Detailed implementation ideas and options.

We also use the Brian development mailing list.

11.1.1 Contributing code

First of all, you should register to the developers mailing list. If you want to modify existing modules, you should make
sure that you work on the latest SVN version. We use the Eclipse IDE because it has a nice Python plugin (Pydev)
and SVN plugin, but of course you can use your preferred IDE. The next step is to carefully read the guidelines in this
guide.

Now that you wrote your code:

• Write a test for it in brian/tests/testinterface. If it is a new module, create a new file
test_mymodule.py;

• Write documentation, both in the file (see how it’s done in existing modules) and, if appropriate, in the relevant
file in docs_sphinx. We use the Sphinx documentation generator tools. If you want to see how it looks,
generate the html docs by executing dev/tools/docs/build_html.py. The html files will then be in
docs.

• If it is a significant feature, write an example script in examples and insert a line in
examples/examples_guide.txt.

• Create a patch file. For example with Eclipse, right-click on the Brian project, then Team > Create Patch > Save
in filesystem, then Next > Project.

• Send your patch as an attachment to the developers mailing list and make sure the subject of your message starts
with [PATCH]. Then describe your patch in your message.

From that point, your patch will either be directly included in the svn or (more likely) will be first discussed in the
mailing list.

New modules. New Brian modules typically start in the dev/ideas folder, then go to brian/experimental
when they starting looking like modules. They move to the main folder when they are stable (especially the user
syntax).

11.2 Simulation principles

The following paper outlines the principles of Brian simulation: Goodman, D and Brette R (2008), Brian: a simulator
for spiking neural networks in Python, Front. Neuroinform. doi:10.3389/neuro.11.005.2008.

This one describes the simulation algorithms, which are based on vectorisation: Brette R and Goodman, DF, Vectorised
algorithms for spiking neural network simulation, Neural Computation (in press).

11.2.1 Sample script

Below we present a Brian script, and a translation into pure Python to illustrate the basic principles of Brian simula-
tions.

Original Brian script

A script in Brian:
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’’’
Very short example program.
’’’
from brian import *
from time import time

N=10000 # number of neurons
Ne=int(N*0.8) # excitatory neurons
Ni=N-Ne # inhibitory neurons
p=80./N
duration=1000*ms

eqs=’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’

P=NeuronGroup(N,model=eqs,
threshold=-50*mV,reset=-60*mV)

P.v=-60*mV+10*mV*rand(len(P))
Pe=P.subgroup(Ne)
Pi=P.subgroup(Ni)

Ce=Connection(Pe,P,’ge’,weight=1.62*mV,sparseness=p)
Ci=Connection(Pi,P,’gi’,weight=-9*mV,sparseness=p)

M=SpikeMonitor(P)
trace=StateMonitor(P,’v’,record=0)

t1=time()
run(1*second)
t2=time()
print "Simulated in",t2-t1,"s"
print len(M.spikes),"spikes"

subplot(211)
raster_plot(M)
subplot(212)
plot(trace.times/ms,trace[0]/mV)
show()

Equivalent in pure Python

The script above translated into pure Python (no Brian):

’’’
A pure Python version of the CUBA example, that reproduces basic Brian principles.
’’’
from pylab import *
from time import time
from random import sample
from scipy import random as scirandom

"""
Parameters
"""
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N=10000 # number of neurons
Ne=int(N*0.8) # excitatory neurons
Ni=N-Ne # inhibitory neurons
mV=ms=1e-3 # units
dt=0.1*ms # timestep
taum=20*ms # membrane time constant
taue=5*ms
taui=10*ms
p=80.0/N # connection probability (80 synapses per neuron)
Vt=-1*mV # threshold = -50+49
Vr=-11*mV # reset = -60+49
we=60*0.27/10 # excitatory weight
wi=-20*4.5/10 # inhibitory weight
duration=1000*ms

"""
Equations
---------
eqs=’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’

This is a linear system, so each update corresponds to
multiplying the state matrix by a (3,3) ’update matrix’
"""

# Update matrix
A=array([[exp(-dt/taum),0,0],

[taue/(taum-taue)*(exp(-dt/taum)-exp(-dt/taue)),exp(-dt/taue),0],
[taui/(taum-taui)*(exp(-dt/taum)-exp(-dt/taui)),0,exp(-dt/taui)]]).T

"""
State variables
---------------
P=NeuronGroup(4000,model=eqs,

threshold=-50*mV,reset=-60*mV)
"""
S=zeros((3,N))

"""
Initialisation
--------------
P.v=-60*mV+10*mV*rand(len(P))
"""
S[0,:]=rand(N)*(Vt-Vr)+Vr # Potential: uniform between reset and threshold

"""
Connectivity matrices
---------------------
Pe=P.subgroup(3200) # excitatory group
Pi=P.subgroup(800) # inhibitory group
Ce=Connection(Pe,P,’ge’,weight=1.62*mV,sparseness=p)
Ci=Connection(Pi,P,’gi’,weight=-9*mV,sparseness=p)
"""
We_target=[]
We_weight=[]
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for _ in range(Ne):
k=scirandom.binomial(N,p,1)[0]
target=sample(xrange(N),k)
target.sort()
We_target.append(target)
We_weight.append([1.62*mV]*k)

Wi_target=[]
Wi_weight=[]
for _ in range(Ni):

k=scirandom.binomial(N,p,1)[0]
target=sample(xrange(N),k)
target.sort()
Wi_target.append(target)
Wi_weight.append([-9*mV]*k)

"""
Spike monitor
-------------
M=SpikeMonitor(P)

will contain a list of (i,t), where neuron i spiked at time t.
"""
spike_monitor=[] # Empty list of spikes

"""
State monitor
-------------
trace=StateMonitor(P,’v’,record=0) # record only neuron 0
"""
trace=[] # Will contain v(t) for each t (for neuron 0)

"""
Simulation
----------
run(duration)
"""
t1=time()
t=0*ms
while t<duration:

# STATE UPDATES
S[:]=dot(A,S)

# Threshold
all_spikes=(S[0,:]>Vt).nonzero()[0] # List of neurons that meet threshold condition

# PROPAGATION OF SPIKES
# Excitatory neurons
spikes=(S[0,:Ne]>Vt).nonzero()[0] # In Brian we actually use bisection to speed it up
for i in spikes:

S[1,We_target[i]]+=We_weight[i]

# Inhibitory neurons
spikes=(S[0,Ne:N]>Vt).nonzero()[0]
for i in spikes:

S[2,Wi_target[i]]+=Wi_weight[i]

# Reset neurons after spiking
S[0,all_spikes]=Vr # Reset membrane potential
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# Spike monitor
spike_monitor+=[(i,t) for i in all_spikes]

# State monitor
trace.append(S[0,0])

t+=dt

t2=time()
print "Simulated in",t2-t1,"s"
print len(spike_monitor),"spikes"

"""
Plot
----
subplot(211)
raster_plot(M)
subplot(212)
plot(trace.times/ms,trace[0]/mV)
show()

Here we cheat a little.
"""
from brian import raster_plot
class M:

pass
M.spikes=spike_monitor
subplot(211)
raster_plot(M)
subplot(212)
plot(arange(len(trace))*dt/ms,array(trace)/mV)
show()

11.3 Main code structure

11.3.1 Overview

Brian features can be broadly categorised into construction of the network, and running the network.

Constructing the network

The following objects need to be specified by the user explicitly or implicitly:

• NeuronGroup

• Connection

• Monitors

• Network

After that, the network needs to be prepared. Preparation of the network involves initialising objects’ data structures
appropriately, in particular compressing the Connection matrices. Connection matrices are initially stored as in-
stances of a ConstructionMatrix class (sparse, dense, etc.), and then later compressed into an instance of a
ConnectionMatrix class. Two levels are necessary, because at construction time, all matrices have to be editable,

350 Chapter 11. Developer’s guide



Brian Documentation, Release 1.4.1

whereas at runtime, for efficiency reasons, some matrix types are read-only or partially read-only. Data structures
appropriate to the construction of a matrix, particularly sparse matrices, are not the most efficient for runtime access.

Constructing the NeuronGroup object is a rather complicated operation, involving the construction of many subsi-
didary objects. The most complicated aspect is the creation, manipulation and analysis of an Equations object.

Running the network

The network is run by repeatedly evaluating the ‘update schedule’ and updating the clock or clocks. The ‘update
schedule’ is user specifiable, but usually consists of the following sequence of operations (interspersed with optional
user network operation calls):

• Update state variables of NeuronGroup

• Call thresholding function

• Push spikes into SpikeContainer

• Propagate spikes (possibly with delays) via Connection

• Update state variables of Synapses (possibly includes updating the state of targeted NeuronGroup objects

• Call reset function on neurons which have spiked

11.3.2 Details of network construction

Construction of NeuronGroup

The NeuronGroup object is responsible for storing the state variables of each of its neurons, for updating them
each time step, generating spikes via a thresholding mechanism, storing spikes so that they can be accessed with a
delay, and resetting state variables after spiking. State variable update is done by a StateUpdater class defined in
brian/stateupdater.py. Thresholding is done by a Threshold class defined in brian/threshold.py
and resetting is done by a Reset class defined in brian/reset.py. The __init__ method of NeuronGroup
takes these objects as arguments, but it also has various additional keywords which can be used more intuitively. In
this case, the appropriate object is selected automatically. For example, if you specify reset=0*mV in the keyword
arguments, Brian generates a Reset(0*mV) object. The NeuronGroup.__init__() method code is rather
complicated and deals with many special cases.

The most complicated aspect of this is the definition of the state variables and the update procedure. Typically, the user
simply gives a list of differential equations, and Brian attempts to automatically extract the appropriate state variable
definitions, and creates a differential equation solver appropriate to them (it needs some help in this at the moment,
e.g. specifying the order or type of the solver). The main work in this is done by the magic_state_updater()
function, which uses the Equations object (see next section).

Once the state variables are defined, various internal objects are created. The state variables are stored in the _S
attribute of a NeuronGroup. This is an MxN matrix where M is the number of variables and N is the number of
neurons.

The other major data structure generated is the LS attribute (last spikes). This is a SpikeContainer instance, a
circular array used to contain spikes. See brian/utils/circular.py.

Finally note that the construction of many of these objects requires a Clock object, which can either be specified
explicitly, or is guessed by the guess_clock() function which searches for clocks using the magic module (see
below). EventClock objects are excluded from this guessing.
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The magic_state_updater() function and the Equations object

This function returns an appropriate StateUpdater object and a list of the dynamic variables of an Equations
object. It uses methods of the Equations object to do this (such as Equations.is_linear()).

The Equations object can be constructed in various ways. It can be constructed from a multi-line string or by
adding (concatenating) other Equations objects. Construction by multi-line string is done by pattern matching.
The four forms are:

1. dx/dt = f : unit (differential equation)

2. x = f : unit (equation)

3. x = y (alias)

4. x : unit (parameter)

Differential equations and parameters are dynamic variables, equations and aliases are just computed and substituted
when necessary. The f patterns in the forms above are stored for differential equations and parameters. For the so-
lution of nonlinear equations, these f patterns are executed as Python code in the evaluation of the state update. For
example, the equations dV/dt = -V*V/(10*ms) : 1 and dW/dt = cos(W)/(20*ms) : 1 are numer-
ically evaluated with an Euler method as the following code (generated from the list of dynamic variables and their
defining strings):

V, W = P._S
V__tmp, W__tmp = P._dS
V__tmp[:] = -V*V/(10*ms)
W__tmp[:] = cos(W)/(20*ms)
P._S += dt*P._dS

This code generation is done by the Equations.forward_euler() family of methods.

In the case where the equations are linear, they are solved by a matrix exponential using the code in
get_linear_equations() defined in brian/stateupdater.py.

Finally, note that equations strings can contain references to names of objects that are defined in the namespace of
the string, and the Equations object can pick these out. It does this by inspecting the call stack, extracting the
namespace for the appropriate level (which has to be kept track of), and plucking out the appropriate name. The
level=... keywords you see dotted around Brian’s code are there to keep track of these levels for this reason.

Construction of Connection

Connection objects provide methods for storing weight matrices and propagating spikes. Spike propagation
is done via the Connection.do_propagate() and Connection.propagate() methods. Weight ma-
trices are stored in the W attribute. Initially, weight matrices are ConstructionMatrix objects and are con-
verted by the Connection.compress() method, via the matrices’ connection_matrix() methods to
ConnectionMatrix objects. The idea is to have two data structures, one appropriate to the construction of a
matrix, supporting adding and removing new synapses, and one appropriate to runtime behaviour, focussing on fast
row access above all else. There are three matrix structures, ‘dense’, ‘sparse’ and ‘dynamic’ (and ‘computed’ may
be added later). The ‘dense’ matrix is just a full 2D array, and the matrix objects just reproduce the functionality
of numpy arrays. The ‘sparse’ and ‘dynamic’ structures are sparse matrices. The first doesn’t allow you to add or
remove elements at runtime and is very optimised, the second does allow you to and is less optimised. Both are more
optimised than scipy’s sparse matrices, which are used as the basis for the construction phase.

Connection objects can handle homogeneous delays (all synapses with the same delay) by pulling spikes from
NeuronGroup‘s LS object with a delay. Heterogeneous delays (each synapse with a different delay) are done by the
DelayConnection object, which stores a _delayvec attribute alongside the W attribute. The delay matrix is of
the same type as the weight matrix and in the case of sparse matrices must have nonzero elements at the same places.
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The Connection object automatically turns itself into a DelayConnection object if heterogeneous delays are
requested, so that the user doesn’t even need to know of the existence of DelayConnection.

The Connection object also provides methods for initialising the weight matrices either fully, randomly, etc. (See
the user docs.)

Construction of monitors

The SpikeMonitor class of monitors derive from Connection. Rather than propagating spikes to another group,
they store them in a list. The work is done in the SpikeMonitor.propagate() method.

The StateMonitor class of monitors derive from NetworkOperation. Network operations are called once
every time step and execute arbitrary Python code. The StateMonitor class of monitors record state variables each
time step to a list.

Construction of Network

When the user calls the function run(), a MagicNetwork object is created, and the Network.run() method
is called. MagicNetwork gathers, using the magic module, a list of all appropriate objects and runs them to-
gether. Alternatively, the user can specify their own list of objects using a Network object. Each time an object is
added to a Network either via the initialiser or the Network.add() method, it checks to see if it has an attribute
contained_objects, and if so it adds all the objects in that to the network too. This allows, for example, the
STDP object to contained NeuronGroup and Connection objects which the user doesn’t see, but are used to
implement the STDP functionality.

The Network.run() method calls the Connection.compress() method on every Connection object to
convert construction matrices to connection matrices. It also builds an update schedule (see below).

The magic module

The magic module is used for tracking instances of objects. A class that derives from the
magic.InstanceTracker class can be tracked in this way, including NeuronGroup, Connection,
NetworkOperation and Clock. The find_instances() function can be used to search for instances. Note
that find_instances() will only return instances which were instantiated in the same execution frame as the
find_instances() calling frame, or (if the level keyword is used) one of the frames higher up in the call
stack. The idea is that you may have modular code with objects defined in different places, but that you don’t want to
use all objects that exist at all in the network. This system causes a bit of trouble, but seems unavoidable. See the user
manual section Projects with multiple files or functions for details on getting around this.

11.3.3 Details of network running

Update schedules

An update schedule gives the sequence of operations to be carried out each time step of the simulation. Typically this
is: state update and threshold; propagation; reset, although an option is available for switching propagation and reset
around. Network operations can be weaved in anywhere amongst these basic steps. See the reference documentation
for the Network object for more details.

Simulation proceeds by choosing the clock with the lowest current time, selecting all objects which have that clock
as their clock, and performing the update schedule on those objects, before applying the Clock.tick() method to
increment the clock time by dt.
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Network operations

A NetworkOperation object is called as if it were a function, i.e. the __call__()method is called with no argu-
ments. The network_operation() decorator exists to convert a function into a suitable NetworkOperation
object. This technique is used for the internal functioning of many of Brian’s features (such as StateMonitor).

NeuronGroup update

The NeuronGroup.update() method does the following three things. First of all it calls the StateUpdater
to update the state variables. Then it calls its Threshold object if one exists to extract the indices of the spiking
neurons. Finally it pushes these into the LS attribute for extraction by any Connection objects.

NeuronGroup reset

The Reset.__call__() method pulls spike from the NeuronGroup‘s LS attribute and then resets the state
variables for those.

Spike propagation

The Connection.do_propagate() method does two things, it gets the spike indices to propagate (with
homogeneous delays if chosen) from the LS attribute of the NeuronGroup and then passes these to its
Connection.propagate() method. This method extracts a list of connection matrix rows using the
ConnectionMatrix.get_rows() method. This method returns a list of ConnectionVector instances.
There are two types of ConnectionVector, dense and sparse. Dense ones are simply numpy arrays, sparse
ones consist of two numpy arrays, an array of values and an array of corresponding column indices. The
SparseConnectionVector class has some methods which make this distinction seamless to the user in most
instances, although developers need to be aware of it. Finally, the Connection.propagate() method goes
through this list applying the row vectors one by one. The pure Python version of this is straightforward, but there is
also a C++ accelerated version which uses the scipy Weave package if the user has a suitable compiler on their system.
This version is much more efficient, but the code is rather dense and difficult to understand.

11.4 Equations

An Equation is a set of single lines in a string:

1. dx/dt = f : unit (differential equation)

2. x = f : unit (equation)

3. x = y (alias)

4. x : unit (parameter)

The equations may be defined on multiple lines with the character . Comments using # may also be included.

Two special variables are defined: t (time) and xi (white noise). Ultimately, it should be possible (using Sympy) to
define equations implicitly, e.g.: ‘tau*dv/dt=-v : unit’ (although it makes unit specification ambiguous).

An equation can be seen as a set of functions or code and a namespace to evaluate them. A key part of object
construction is the construction of the namespace (after parsing).
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11.4.1 Namespace construction

The namespaces are stored in eq._namespace. Each equation (string) has a specific namespace.

Proposition for a simplification: there could be just one namespace per Equation object rather than per string. Possible
conflicts would be dealt with when equations are added (with prefix as when inserting static variables, see below).

Variable substitution

These are simply string substitutions.

• Equation(‘dv/dt=-v/tau:volt’,tau=’taum’)

The name of the variable (tau) is changed in the string to taum.

• Equation(‘dv/dt=-v/tau:volt’,tau=None)

The name of the variable (tau) is changed in the string to a unique identifier.

Explicit namespace

• Equation(‘dv/dt=-v/tau:volt’,tau=2*ms)

The namespace is explicitly given: {‘tau’:2*ms}. In this case, Brian does not try to build a namespace “magically”,
so the namespace must be exhaustive. Units need not be passed.

Implicit namespace

• Equation(‘dv/dt=-v/tau:volt’)

The namespace is built from the globals and locals in the caller’s frame. For each identifier in the string, the name is
looked up in: 1) locals of caller, 2) globals of caller, 3) globals of equations.py module (typically units). Identifiers
can be any Python object (for example functions).

Issues

• Special variables (xi and t) are not taken into account at this stage, i.e., they are integrated in the namespace
if present. This should probably be fixed and a warning should be raised. A warning is raised for t at the
preparation stage (see below).

• If identifiers are not found, then no error is raised. This is to allow equations to be built in several pieces, which
is useful in particular for library objects.

• If an identifier is found whose name is the same as the name of a variable, then no error is raised here and it is
included in the namespace. This is difficult to avoid in the case when equations are built in several pieces (e.g.
the conflict appears only when the pieces are put together). A warning is issued at the preparation stage (see
below).

11.4.2 Attributes after initialisation

After initialisation, an Equation object contains:

• a namespace (_namespace)

• a dictionary of units for all variables (_units)
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• a dictionary of strings corresponding to each variable (right hand side of each equation), including parameters
and aliases (_string). Parameters are defined as differential equations with RHS 0*unit/second. All comments
are removed and multiline strings are concatenated.

• a list of variables of non-differential equations (_eq_names)

• a list of variables of differential equations, including parameters (_diffeq_names)

• a list of variables of differential equations, excluding parameters (_diffeq_names_nonzero)

• a dictionary of aliases (_alias), mapping a variable name to its alias

There is no explicit list of parameters, maybe it should be added. Nothing more is done at initialisation time (no units
checking, etc). The reason is that the equation set might not be complete at this time, in the case when equations are
built in several pieces. Various checks are done using the prepare() method.

11.4.3 Finalisation (prepare())

The Equation object is finalised by an explicit call to the prepare() method.

Finding Vm

The first step is to find the name of the membrane potential variable (getVm()). This is useful when the variable name
for threshold or reset is not given (e.g. threshold=10*mV). The method looks for one these names: ‘v’,’V’,’vm’,’Vm’.
If one is present, it is the membrane potential variable. If none or more than one is present, no variable is found. If
it is found, the corresponding variable is swapped with the first variable in the _diffeq_names list (note: not in the
_diffeq_names_nonzero list). Otherwise, nothing happens. This way, the first variable in the list is the membrane
potential. Possibly, a warning could be issued if it is not found. The problem it might issue warnings too often. A
better way would be to issue warnings only when threshold and reset are used ambiguously (i.e., no Vm found and
more than 1 variable).

Cleaning the namespace

Then variables and t are removed from the namespace if present (N.B.: xi does not appear to be removed), and
warnings are issued using log_warn (method clean_namespace()).

Compiling functions

This is done by the compile_functions() method. Python functions are created from the string definition of equations.
For each equation/differential equation, the list of identifiers is obtained from the string definition, then only those
referring to variables are kept. A Python lambda function of these remaining identifiers is then compiled (using eval)
and put in the _function dictionary.

Compiled functions are used for:

• checking units

• obtaining the list of arguments (this could be done independently)

• state updates

This step might be avoided and replaced by eval calls. It might actually be a little simpler because arguments would
be replaced by namespace. It seems to be faster with the current implementation, but the string could be compiled
with compile() (then evaluated in the relevant namespace). Besides, with the way it is currently evaluated in the Euler
update: f(*[S[var] for var in f.func_code.co_varnames]), it is not faster than direct evaluation
in the namespace.

356 Chapter 11. Developer’s guide



Brian Documentation, Release 1.4.1

Checking units

This is done by the check_units() method. First, the static equations are ordered (see next section).

To check the units of a static equation, one calls the associated function (giving the RHS) where the arguments are
units (e.g., 1*volt for v, etc.) and adds the units of the LHS. A dimension error is raised if it is not homogeneous. Cur-
rently, the message states “The differential equation is not homogeneous” but it should be adapted to non-differential
equations. One problem with this way of checking units is that the RHS function may not be defined at the point it is
checked.

Differential equations are checked in the same way, with two specificities: the units of RHS should be the units of the
variable divided by second (dx/dt), and noise (xi) has units of second**-.5 (this is put in the globals of the function,
which might not be a very clean way to do it).

Ordering static variables

It seems that this method (set_eq_order()) is already called by check_units() and therefore it is probably not necessary
to call it here. This method computes the dependency graph of (static) equations on other static variables, which must
have no cycle (otherwise an error is raised). From that graph, an update list is built and put in _eq_names. Then for
each variable (static or differential), the list of dependent static variables is built and sorted in update order. The result
is put in the _dependencies dictionary.

This is a necessary step to calculate the RHS of any equation: it gives the ordered list of static variables to calculate
first before calculating the RHS.

Inserting static variables into differential equations

The value of static variables are then replaced by their string value (RHS) in all differential equations (substitute_eq()).
The previous step (ordering) ensures that the result if correct and does not depend on static variables anymore. To avoid
namespace conflicts, all identifiers in the namespace of a static variable is augmented by a prefix: name+’_’ (e.g. ‘x_y’
for identifier y in equation ‘x=2*y’). Then namespaces are merged.

It might not be optimal to do it in this way, because some of calculations will be done several times in an update step.
It might be better to keep the static variables separate.

Recompiling functions

Functions are then recompiled so that differential equations are now independent of static variables.

Checking free variables

Finally, the list of undefined identifiers is checked (free_variables()) and a warning is issued if any is found.

11.4.4 Freezing

Freezing is done by calling compile_functions(freeze=True). Each string expression is then frozen with opti-
miser.freeze(), which replaces identifiers by their float value. This step does not necessarily succeed, in which case a
warning (not an error) is issued.
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11.4.5 Adding Equation objects

Adding equations consists simply in merging the lists/dictionaries of variables, namespaces, strings, units and func-
tions. Conflicts raise an error. This step must precede preparation of the object.

11.5 Code generation

Warning: This section is a work in progress, documenting the most recent code generation framework, which is
in the package brian.experimental.codegen2.

11.5.1 Overview

To generate code, we start with a basic statement or set of statements we want to evaluate for all neurons, or for
all synapses, and then apply various transformations to generate code that will do this. We start from a structured,
language-invariant representation of the set of basic statements. We then ‘resolve’ the unknown symbols in it. This is
done recursively, the resolution of each symbol can add vectorised statements or loops to the current representation, and
add data to a namespace that will be associated to the final code. Symbols will be things like a NeuronGroup state
variable, or a synaptic weight value. The output of this process is a new, more complicated structured representation,
including things like loops if necessary. Next, we convert this structured representation into a code string. Finally, this
code string is JIT-compiled into an executable object.

Using numerical integration generation

You can use Brian’s equations format to generate C/C++ code for a numerical integration step, for example:

eqs = ’’’
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
’’’
code, vars, params = make_c_integrator(eqs, method=euler, dt=0.1*ms)
print code

has output:

double _temp_v = 50.0*ge + 50.0*gi - 50.0*v - 2.45;
double _temp_ge = -200.0*ge;
double _temp_gi = -100.0*gi;
v += _temp_v*0.0001;
ge += _temp_ge*0.0001;
gi += _temp_gi*0.0001;

See the documentation for the function make_c_integrator().

Using the code generation package

The basic way to use the code generation module is as follows:

1. Create a Block of Statement objects which you want to execute. You can use
statements_from_codestring() to do this.

2. Create a dictionary of Symbol objects corresponding to the symbols in the block above.
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3. Call CodeItem.generate() with the specified language and symbols, to give you a Code object.

4. Optionally, insert additional data into the namespace of the Code object.

5. Use the Code object via code(name1=val1, name2=val2)where the name=val are to be inserted into
the namespace before the code is called.

This process is very clearly illustrated in the source code for CodeGenStateUpdater.

Structure of the package

The following are the main elements of the code generation package:

Code This is the output of the code generation package, a compilable/compiled code fragment, along with a names-
pace in which it is executed.

Language Used to specify which language the output should have.

CodeItem Before code is converted into a specific language, it is stored in a language-invariant format consisting
of CodeItem objects, which can in turn contain other CodeItem objects. The main derived classes from this
are Block and Statement. The first can contain a series of statements, or it can be a for loop, an if block,
etc. A Statement can be a MathematicalStatement or CodeStatement. The former is for things
like x=y*z and the latter for things like x = arr[index].

Symbol, resolve() A CodeItem with unresolved dependencies needs to be resolved by the function
resolve(). Each unresolved depdendency should correspond to a Symbol which knows how to modify
a CodeItem in order to resolve itself. For example, a NeuronGroupStateVariableSymbol will in-
sert the NeuronGroup state variable value into the namespace, create a new array symbol like __arr_V for
symbol V, and resolve itself either by doing nothing (in Python, as the variable is already vectorised), or by
introducing a loop (in C++), or by setting the index variable as the kernel thread (for GPU). For more details,
see the section on resolution below.

make_integration_step(), euler(), rk2(), exp_euler() Numerical integration schemes, each in-
tegration scheme (such as euler()) converts a set of differential equations into a sequence of
MathematicalStatement objects comprising an integration step.

CodeGenStateUpdater, CodeGenThreshold, CodeGenReset, CodeGenConnection Brian objects
using code generation.

11.5.2 Resolution process

Example

We start with a worked example. Consider the statement:

V = V+1

Here V is a NeuronGroup state variable. We wish to transform this into code that can be executed. In the case of
Python, the output would look like:

_neuron_index = slice(None)
V = _arr_V[_neuron_index]
_arr_V[_neuron_index] = V+1

The symbol _arr_V would be added directly to the namespace.

In the case of C++ it would look like:
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for(int _neuron_index=0; _neuron_index<_len__arr_V; _neuron_index++)
{

double &V = _arr_V[_neuron_index];
V = V+1;

}

Here the symbols _arr_V and _len__arr_V‘ would be added to the namespace. The reason for these complicated
names is to do with making the code as generic as possible, not introducing namespace clashes (symbols starting with
_ are reserved), etc.

The way the process works is we start with the statement V=V+1 and a Symbol object with name V, specifically
a NeuronGroupStateVariableSymbol. The statement V=V+1 depends on V with both a Read and Write
dependency. We therefore have to ‘resolve’ the symbol V. To do this we call the method resolve() on V.

In the case of Python, this gives us:

V = _arr_V[_neuron_index]
_arr_V[_neuron_index] = V+1

It adds _arr_V to the namespace, and creates a dependency on _neuron_index. The reason that V=V+1 is
translated to _arr_V[_neuron_index] = V+1 is that on the left hand side we have a write variable, and
on the right hand side we have a read variable. In Python, when vectorising, we have no choice but to give
the underlying array with its slice when writing to an array. However, at this point the code generation frame-
work doesn’t know what _neuron_index will be, so it could be, for example, an array of indices. In this
case, suppose we did V*V it would be more efficient to compute V=_arr_V[_neuron_index] and then com-
pute V*V than to compute _arr_V[_neuron_index]*_arr_V[_neuron_index], and in the case where
_neuron_index=slice(None) it is no slower, so we always do this.

In the case of C++, the first resolution step gives us:

double &V = _arr_V[_neuron_index];
V = V+1;

For the second resolution step, we need to resolve _neuron_index, which is a symbol of type SliceIndex,
telling us that _neuron_index varies over all neurons. Note that we could also have _neuron_index being
an ArrayIndex, for examples spikes, and then this could be used for a reset operation (we would iterate only
over those indices of neurons which had spiked). Here though, we iterate over all neurons. In Python, calling the
resolve() method of _neuron_index gives us:

_neuron_index = slice(None)
V = _arr_V[_neuron_index]
_arr_V[_neuron_index] = V+1

and in C++:

for(int _neuron_index=0; _neuron_index<_len__arr_V; _neuron_index++)
{

double &V = _arr_V[_neuron_index];
V = V+1;

}

In both cases, the _neuron_index symbol is resolved and the process is complete.

Note that we have actually mixed two stages here, the stage of generating a structured representation of the code
using CodeItem objects, and the stage of generating code strings using CodeItem.convert_to(). In fact, the
converting of, for example, V to _arr_V[_neuron_index] only happens at the second stage.
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resolve()

The first stage, acting on the structured representation of nested CodeItem objects is resolved using the function
resolve(). This calls Symbol.resolve() for each of the symbols in turn. The resolution order is determined by
an optimal efficiency algorithm, see the reference documentation for resolve() for the full algorithm description.

Symbol.resolve() can do an arbitrary transformation of the input CodeItem, but typically it will either do
something like:

load()
item
save()

Or something like:

for name in array:
item

See the reference documentation for Symbol.resolve(), and the documentation for the most important symbols:

• SliceIndex

• ArraySymbol

• ArrayIndex

• NeuronGroupStateVariableSymbol

convert_to()

This step is relatively straightforward, each CodeItem object has its convert_to method called iteratively. The
important one is in MathematicalStatement, where the left hand side usage is replaced by Symbol.write()
and the right hand side usage is replaced by Symbol.read(). In addition, at this stage the syntax of mathematical
statements is corrected, e.g. Python’s x**y is replaced by C++’s pow(x,y) using sympy.

11.5.3 Code generation in Brian

The four objects used for code generation in Brian are:

CodeGenStateUpdater Used for numerical integration, see above and reference documentation.

CodeGenThreshold Used for computing a threshold function.

CodeGenReset Used for computing post-spike reset.

CodeGenConnection Used for synaptic propagation.

Numerical integration

An integration scheme is generated from an Equations object using the make_integration_step() function.
See reference documentation for that function for details.

This is carried out by CodeGenStateUpdater, which can be used as a Brian brian.StateUpdater object in
brian.NeuronGroup.

As an example, for Euler integration, the differential equations:

dx/dt = expr
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are separated by Equations into variable x with expression expr. This then becomes:

_temp_x := expr
x += _temp_x*dt

This can then be resolved by the code generation mechanisms described already.

Synaptic propagation

TODO: synaptic propagation, including docstrings and code comments

NOTE: GPU functionality not included for synaptic propagation yet.

11.5.4 GPU

Warning: GPU code is highly transitional, many details may change in the future.

GPU code is handled by five classes:

GPULanguage (derived from CLanguage) Identifies the language as CUDA, and stores a singleton
GPUManager object which is used to manage the GPU.

GPUCode (derived from Code) Returned from the code generation process, but mostly just acts as a proxy to
GPUManager.

GPUKernel Handles the final stage of taking a partially generated kernel (without the vectorisation over
threads) and computing the final kernel (using vectorisation over threads). Also adds data to the
GPUSymbolMemoryManager.

GPUManager Manages the GPU generally. Stores a set of kernels (GPUKernel) and manages memory via
GPUSymbolMemoryManager. Handles joining the memory management code and kernel code into a single
source file, and compiling it.

GPUSymbolMemoryManager Handles allocation of GPU memory for symbols.

For more details, see the reference documentation for the classes in the order above.

Note that CodeGenConnection is the only code generation version of a Brian class which is not GPU enabled at
present.

11.5.5 Extending code generation

To extend code generation, you will probably need to add new Symbol classes. Read the documentation for this class
to start, and the documentation for the most important symbols:

• SliceIndex

• ArraySymbol

• ArrayIndex

• NeuronGroupStateVariableSymbol

See also CodeItem, particularly the process described in CodeItem.generate().
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11.5.6 Inheritance diagrams

The overall structure of the classes in the code generation package are included below, for reference.

Languages

languages.PythonLanguage

languages.Language

languages.CLanguage

management.GPULanguage
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Code objects

codeobject.PythonCode

codeobject.Code

management.GPUCode codeobject.CCode

Code items

statements.MathematicalStatement

statements.Statement

statements.CodeStatement

codeitems.CodeItem

blocks.Block

blocks.PythonForBlock

blocks.ForBlock

blocks.CForBlock

blocks.ControlBlock

blocks.IfBlock

blocks.CIfBlock blocks.PythonIfBlock

statements.CDefineFromArray

Equations

expressions.Expression
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Symbols

symbols.RuntimeSymbol

symbols.Symbol

symbols.ArrayIndex symbols.ArraySymbol symbols.SliceIndex

symbols.NeuronGroupStateVariableSymbol

Resolution and code output

dependencies.Dependency

dependencies.Write dependencies.Read

Integration

integration.EquationsContainer
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GPU

codeobject.Code

management.GPUCode

languages.Language

languages.CLanguage

management.GPULanguage

management.GPUKernel management.GPUManager management.GPUSymbolMemoryManager

Brian objects

Connection

brian.base.ObjectContainer

connections.connection.Connection

brian.magic.InstanceTracker

codegen2.connection.CodeGenConnection

codegen2.connection.DenseMatrixSymbols codegen2.connection.SparseMatrixSymbols

Reset

codegen2.reset.CodeGenReset

brian.reset.Reset
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State updater

codegen2.stateupdater.CodeGenStateUpdater

brian.stateupdater.StateUpdater

Threshold

codegen2.threshold.NumSpikesSymbol

codegen2.symbols.Symbol

codegen2.threshold.CodeGenThreshold

brian.threshold.Threshold

11.5.7 Reference

blocks

class brian.experimental.codegen2.Block(*args)
Contains a list of CodeItem objects which are considered to be executed in serial order. The list is passed as
arguments to the init method, so if you want to pass a list you can initialise as:

block = Block(*items)

class brian.experimental.codegen2.ControlBlock(start, end, contents, dependencies, re-
solved)

Helper class used as the base for various control structures such as for loops, if statements. These are typically
not language-invariant and should only be output in the resolution process by symbols (which know the language
they are resolving to). Consists of strings start and end, a list of contents (as for Block), and explicit
sets of dependencies and resolved (these are self-dependencies/resolved). The output code consists of
the start string, the indented converted contents, and then the end string. For example, for a C for loop, we would
have start=’for(...){ and end=’}’.

convert_to(language, symbols={}, namespace={})

class brian.experimental.codegen2.ForBlock(start, end, contents, dependencies, resolved)
Simply a base class, does nothing.
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class brian.experimental.codegen2.PythonForBlock(var, container, content, dependen-
cies=None, resolved=None)

A for loop in Python, the structure is:

for var in container:
content

Where var and container are strings, and content is a CodeItem or list of items.

Dependencies can be given explicitly, or by default they are Read(x) for each word x in container. Re-
solved can be given explicitly, or by default it is set(var).

class brian.experimental.codegen2.CForBlock(var, spec, content, dependencies=None, re-
solved=None)

A for loop in C, the structure is:

for(spec)
{

content
}

You specify a string var which is the variable the loop is iterating over, and a string spec should be of the form
’int i=0; i<n; i++’. The content is a CodeItem or list of items. The dependencies and resolved
sets can be given explicitly, or by default they are extracted, respectively, from the set of words in spec, and
set([var]).

class brian.experimental.codegen2.IfBlock(start, end, contents, dependencies, resolved)
Just a base class.

class brian.experimental.codegen2.PythonIfBlock(cond, content, dependencies=None, re-
solved=None)

If statement in Python, structure is:

if cond:
content

Dependencies can be specified explicitly, or are automatically extracted as the words in string cond, and re-
solved can be specified explicitly or by default is set().

class brian.experimental.codegen2.CIfBlock(cond, content, dependencies=None, re-
solved=None)

If statement in C, structure is:

if(cond)
{

content
}

Dependencies can be specified explicitly, or are automatically extracted as the words in string cond, and re-
solved can be specified explicitly or by default is set().

codeitems

class brian.experimental.codegen2.CodeItem
An item of code, can be anything from a single statement corresponding to a single line of code, right up to a
block with nested loops, etc.

Should define the following attributes (default values are provided):
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resolved The set of dependencies which have been resolved in this item, including in items contained within
this item. Default value: the union of selfresolved and subresolved. Elements of the set should
be of type Dependency (i.e. Read or Write).

selfresolved The set of dependencies resolved only in this item, and not in subitems. Default value:
set().

subresolved The set of dependencies resolved in subitems, default value is the union of
item.dependencies for each item in this item. Requires the CodeItem to have an iterator, i.e.
a method __iter__.

dependencies, selfdependencies, subdependencies As above for resolved, but giving the
set of dependencies in this code. The default value for dependencies takes the union of
selfdependencies and subdependencies and removes all the symbols in resolved.

This structure of having default implementations allows several routes to derive a class from here, e.g.:

Block Simply defines a list attribute contents which is a sequence of items, and implements __iter__
to return iter(contents).

CodeStatement Defines a fixed string which is not language-invariant, and a fixed set of dependencies and
resolved. The convert_to() method simply returns the fixed string. Does not define an __iter__
method because the default values for dependencies and resolved are overwritten.

convert_to(language, symbols={}, namespace={})
Returns a string representation of the code for this item in the given language. From the user point of view,
you should call generate(), but in developing new CodeItem derived classes you need to implement
this. The default behaviour is simply to concatenate the strings returned by the subitems.

generate(name, language, symbols, namespace=None)
Returns a Code object. The method resolves the symbols using resolve(), converts to a string with
convert_to() and then converts that to a Code object with Language.code_object().

subdependencies

subresolved

codeobject

class brian.experimental.codegen2.Code(name, code_str, namespace, pre_code=None,
post_code=None, language=None)

The basic Code object used for all Python/C/GPU code generation.

The Code object has the following attributes:

name The name of the code, should be unique. This matters particularly for GPU code which uses the name
attribute for the kernel function names.

code_str A representation of the code in string form

namespace A dictionary of name/value pairs in which the code will be executed

code_compiled An optional value (can be None) consisting of some representation of the compiled form
of the code

pre_code, post_code Two optional Code objects which can be in the same or different languages, and can
share partially or wholly the namespace. They are called (respectively) before or after the current code
object is executed.

language A Language object that stores some global settings and state for all code in that language.

Each language (e.g. PythonCode) extends some or all of the methods:
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__init__(...) Unsurprisingly used for initialising the object, should call Code.__init__ with all of its
arguments.

compile() Compiles the code, if necessary. If not necessary, set the code_compiled value to any dummy
value other than None.

run() Runs the compiled code in the namespace.

It will usually not be necessary to override the call mechanism:

__call__(**kwds) Calls pre_code(**kwds), updates the namespace with kwds, executes the code
(calls self.run()) and then calls post_code(**kwds).

compile()

run()

class brian.experimental.codegen2.PythonCode(name, code_str, namespace, pre_code=None,
post_code=None, language=None)

compile()

run()

class brian.experimental.codegen2.CCode(name, code_str, namespace, pre_code=None,
post_code=None, language=None)

run()

connection

class brian.experimental.codegen2.CodeGenConnection(*args, **kwds)

propagate(spikes)

class brian.experimental.codegen2.DenseMatrixSymbols

class SynapseIndex(M, name, weightname, language, sourceindex=’_source_index’, tar-
getlen=’_target_len’)

resolve(read, write, vectorisable, item, namespace)

class DenseMatrixSymbols.TargetIndex(M, name, weightname, language, in-
dex=’_synapse_index’, targetlen=’_target_len’)

dependencies()

load(read, write, vectorisable)

supported_languages = [’python’, ‘c’]

class DenseMatrixSymbols.Value(M, name, language, index=’_synapse_index’)

class brian.experimental.codegen2.SparseMatrixSymbols

class SynapseIndex(M, name, weightname, language, sourceindex=’_source_index’)

resolve(read, write, vectorisable, item, namespace)
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class SparseMatrixSymbols.TargetIndex(M, name, weightname, language, in-
dex=’_synapse_index’)

class SparseMatrixSymbols.Value(M, name, language, index=’_synapse_index’)

dependencies

class brian.experimental.codegen2.Dependency(name)
Base class for Read and Write dependencies.

A dependency marks that a CodeItem depends on a given symbol. Each dependency has a name.

class brian.experimental.codegen2.Read(name)
Used to indicate a read dependency, i.e. the value of the symbol is read.

class brian.experimental.codegen2.Write(name)
Used to indicate a write dependency, i.e. the value of the symbol is written to.

brian.experimental.codegen2.get_read_or_write_dependencies(dependencies)
Returns the set of names of the variables which are either read to or written to in a set of dependencies.

equations

brian.experimental.codegen2.freeze_with_equations(inputcode, eqs, ns)
Returns a frozen version of inputcode with equations and namespace.

Replaces each occurrence in inputcode of a variable name in the namespace ns with its value if it is of int
or float type. Variables with names in brian.Equations eqs are not replaced, and neither are dt or t.

brian.experimental.codegen2.frozen_equations(eqs)
Returns a frozen set of equations.

Each expression defining an equation is frozen as in freeze_with_equations().

expressions

class brian.experimental.codegen2.Expression(expr)
A mathematical expression such as x*y+z.

Has an attribute dependencies which is Read(var) for all words var in expr.

Has a method convert_to() defined the same way as CodeItem.convert_to().

convert_to(language, symbols={}, namespace={})
Converts expression into a string for the given language using the given set of symbols. Replaces
each Symbol appearing in the expression with sym.read(), and if the language is C++ or GPU then
uses sympy.CCodePrinter().doprint() to convert the syntax, e.g. x**y becomes pow(x,y).

formatting

brian.experimental.codegen2.word_substitute(expr, substitutions)
Applies a dict of word substitutions.

The dict substitutions consists of pairs (word, rep) where each word word appearing in expr is
replaced by rep. Here a ‘word’ means anything matching the regexp \bword\b.
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brian.experimental.codegen2.flattened_docstring(docstr, numtabs=0, spacespertab=4,
split=False)

Returns a docstring with the indentation removed according to the Python standard

split=True returns the output as a list of lines

Changing numtabs adds a custom indentation afterwards

brian.experimental.codegen2.indent_string(s, numtabs=1, spacespertab=4, split=False)
Indents a given string or list of lines

split=True returns the output as a list of lines

brian.experimental.codegen2.get_identifiers(expr)
Return all the identifiers in a given string expr, that is everything that matches a programming language variable
like expression, which is here implemented as the regexp \b[A-Za-z_][A-Za-z0-9_]*\b.

brian.experimental.codegen2.strip_empty_lines(s)
Removes all empty lines from the multi-line string s.

gpu

Warning: GPU code is highly transitional, many details may change in the future.

class brian.experimental.codegen2.GPUKernel(name, code, namespace, mem_man, maxblock-
size=512, scalar=’double’, force_sync=True)

Generates final kernel source code and used to launch kernels.

Used in conjunction with GPUManager. Each kernel is prepared with prepare() which generates source
code and adds symbols to the GPUSymbolMemoryManager. The GPUManager compiles the code and sets
the gpu_func attribute, and the kernel can then be called via run().

The initialisation method extracts variable _gpu_vector_index from the namespace and stores it as at-
tribute index, and _gpu_vector_slice as the pair (start, end).

prepare()
Generates kernel source code and adds symbols to memory manager.

We extract the number of GPU indices from the namespace, _num_gpu_indices.

We loop through the namespace, and for each value determine it to be either an array or a single value. If
it is an array, then we place it in the GPUSymbolMemoryManager, otherwise we add it to the list of
arguments provided to the function call. This allows scalar variables like t to be transmitted to the kernel
function in its arguments.

We then generate a kernel of the following (Python template) form:

__global__ void {name}({funcargs})
{{

int {vector_index} = blockIdx.x * blockDim.x + threadIdx.x;
if(({vector_index}<({start}))||({vector_index}>=({end})))

return;
{code_str}
}}

We also compute the block size and grid size using the user provided maximum block size.

prepare_gpu_func()
Calls the pycuda GPU function prepare() method for low-overhead function calls.
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run()
Calls the function on the GPU, extracting the scalar variables in the argument list from the namespace.

class brian.experimental.codegen2.GPUManager(force_sync=True, usefloat=False)
This object controls everything on the GPU.

It uses a GPUKernel object for managing kernels, and a GPUSymbolMemoryManager object for managing
symbol memory.

The class is used by:

1.Adding several kernels using add_kernel()

2.Calling prepare() (see method documentation for details)

3.Run code with run()

Memory is mirrored on GPU and CPU. In the present implementation, in the development phase only, each call
to run() will copy all symbols from CPU to GPU before running the GPU kernel, and afterwards copy all
symbols from GPU back to CPU. In the future, this will be disabled and symbol memory copies will be handled
explicitly by calls to methods copy_to_device() and copy_to_host().

add_kernel(name, code, namespace)
Adds a kernel with the given name, code and namespace. Creates a GPUKernel object.

add_symbols(items)
Proxy to GPUSymbolMemoryManager.add_symbols().

compile()
Compiles code using pycuda.compiler.SourceModule and extracts kernel functions with
pycuda.compiler.SourceModule.get_function(). The GPUKernel.gpu_func at-
tribute is set for each kernel.

copy_to_device(symname)
Proxy to GPUSymbolMemoryManager.copy_to_device().

copy_to_host(symname)
Proxy to GPUSymbolMemoryManager.copy_to_host().

generate_code()
Combines kernel source into one source file, and adds memory management kernel functions. These
simple kernels simply copy a pointer to a previously specified name. This is necessary because when
pycuda is used to allocate memory, it doesn’t give it a name only a pointer, and the kernel functions use
a named array.

Calls GPUSymbolMemoryManager.generate_code().

initialise_memory()
Copies allocated memory pointers to named global memory pointer variables
so that kernels can use them. The kernel names to do this are in the
GPUSymbolMemoryManager.symbol_upload_funcnames dict (keys are symbol names),
and the allocated pointers are in the GPUSymbolMemoryManager.device dict.

make_combined_kernel(*names)
Not used at present. Will be used to combine multiple kernels with the same vectorisation index for
efficiency.

prepare()
Compiles code and initialises memory.

Performs the following steps:
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1.GPUKernel.prepare() is called for each kernel, converting the partial code into a complete
kernel, and adds symbols to the GPUSymbolMemoryManager, which allocates space on the GPU
and copies data to it from the CPU.

2.generate_code() is called, combining individual kernels into one source file, and adding mem-
ory management kernels and declarations.

3.compile() is called, which JIT-compiles the code using pycuda.

4.initialise_memory() is called, which allocates memory

run(name)
Runs the named kernel. Calls GPUKernel.run(). Note that all symbols are copied to and from the
GPU before and after the kernel run, although this is only for the development phase and will change later.

class brian.experimental.codegen2.GPUSymbolMemoryManager(usefloat=False)
Manages symbol memory on the GPU.

Stores an attribute device and host which are dicts, with keys the symbol names, and
values pycuda.gpuarray.GPUArray and numpy.ndarray respectively. Add symbols with
add_symbols(), which will allocate memory.

add_symbols(items)
Adds a collection of symbols.

Each item in items is of the form (symname, hostarr, devname) where symname is the sym-
bol name, hostarr is the numpy.ndarray containing the data, and devname is the name the array
pointer should have on the device.

Allocates memory on the device, and copies data to the GPU.

copy_to_device(symname)
Copy the memory in the numpy.ndarray for symname to the allocated device memory. If
symname==True, do this for all symbols. You can also pass a list for symname.

copy_to_host(symname)
As for copy_to_device() but copies memory from device to host.

generate_code()
Generates declarations for array pointer names on the device, and kernels to copy device pointers to the
array pointers. General form is:

__device__ {dtypestr} *{name};
__global__ void set_array_{name}({dtypestr} *_{name})
{

{name} = _{name};
}

Stores the kernel function names in attribute symbol_upload_funcnames (dict with keys being sym-
bol names).

Returns a string with declarations and kernels combined.

names
The list of symbol names managed.

class brian.experimental.codegen2.GPUCode(name, code_str, namespace, pre_code=None,
post_code=None, language=None)

Code object for GPU.

For the user, works as the same as any other Code object. Behind the scenes, source code is passed to the
GPUManager gpu_man from the GPULanguage object, via GPUManager.add_kernel(). Compila-
tion is handled by GPUManager.prepare(), and running code by GPUManager.run().
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compile()
Simply calls GPUManager.prepare().

run()
Simply runs the kernel via GPUManager.run().

class brian.experimental.codegen2.GPULanguage(scalar=’double’, gpu_man=None,
force_sync=True)

Language object for GPU.

Has an attribute gpu_man, the GPUManager object responsible for allocating, copying memory, etc. One is
created if you do not specify one.

CodeObjectClass
alias of GPUCode

integration

class brian.experimental.codegen2.EquationsContainer(eqs)
Utility class for defining numerical integration scheme

Initialise with a set of equations eqs. You can now iterate over this object in two ways, firstly over all the
differential equations:

for var, expr in eqscontainer:
yield f(expr)

Or over just the differential equations with nonzero expressions (i.e. not including dx/dt=0 for parameters):

for var, expr in eqscontainer.nonzero:
yield f(expr)

Here var is the name of the symbol, and expr is a string, the right hand side of the differential equation
dvar/dt=expr.

Also has attributes:

names The symbol names for all the differential equations

names_nonzero The symbol names for all the nonzero differential equations

brian.experimental.codegen2.make_integration_step(method, eqs)
Return an integration step from a method and a set of equations.

The method should be a function method(eqs) which receives a EquationsContainer object as its
argument, and yield s statements. For example, the euler() integration step is defined as:

def euler(eqs):
for var, expr in eqs.nonzero:

yield ’_temp_{var} := {expr}’.format(var=var, expr=expr)
for var, expr in eqs.nonzero:

yield ’{var} += _temp_{var}*dt’.format(var=var, expr=expr)

brian.experimental.codegen2.euler(eqs)
Euler integration

brian.experimental.codegen2.rk2(eqs)
2nd order Runge-Kutta integration

brian.experimental.codegen2.exp_euler(eqs)
Exponential-Euler integration
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languages

class brian.experimental.codegen2.Language(name)
Base class for languages, each should provide a name attribute, and a method code_object().

code_object(name, code_str, namespace)
Return a Code object from a given name, code string code_str and namespace. If the class has a
class attribute CodeObjectClass, the default implementation returns:

CodeObjectClass(name, code_str, namespace, language=self)

class brian.experimental.codegen2.PythonLanguage
Python language.

CodeObjectClass
alias of PythonCode

class brian.experimental.codegen2.CLanguage(scalar=’double’)
C language.

Has an attribute scalar=’double’ which gives the default type of scalar values (used when dtype is not
specified). This can be used, for example, on the GPU where double may not be available.

CodeObjectClass
alias of CCode

makeintegrator

brian.experimental.codegen2.make_c_integrator(*args, **kwds)
Gives C/C++ format code for the integration step of a differential equation.

eqs The equations, can be an brian.Equations object or a multiline string in Brian equations format.

method The integration method, typically euler(), rk2() or exp_euler(), although you can pass your
own integration method, see make_integration_step() for details.

dt The value of the timestep dt (in Brian units, e.g. 0.1*ms)

values Optional, dictionary of mappings variable->value, these values will be inserted into the generated
code.

scalar By default it is ’double’ but if you want to use float as your scalar type, set this to ’float’.

timename The name of the time variable (if used). In Brian this is ‘t’, but you can change it to ‘T’ or ‘time’
or whatever. This can be used if you want users to specify time in Brian form (‘t’) but the context in which
this code will be used (e.g. another simulator) specifies time with a different variable name (e.g. ‘T’).

timeunit The unit of the time variable, scaled because Brian expects time to be in seconds.

Returns a triple (code, vars, params):

code The C/C++ code to perform the update step (string).

vars A list of variable names.

params A list of per-neuron parameter names.

reset

class brian.experimental.codegen2.CodeGenReset(group, inputcode, language, level=0)
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resolution

brian.experimental.codegen2.resolve(item, symbols, namespace=None)
Resolves symbols in item in the optimal order.

The first stage of this algorithm is to construct a dependency graph on the symbols.

The optimal order is resolve loops as late as possible. We actually construct the inverse of the resolution order,
which is the intuitive order (i.e. if the first thing we do is loop over a variable, then that variable is the last
symbol we resolve).

We start by finding the set of symbols which have no dependencies. The graph is acyclic so this always possible.
Then, among those candidates, if possible we choose loopless symbols first (this corresponds to executing loops
as late as possible). With this symbol removed from the graph we repeat until all symbols are placed in order.

We then resolve in reverse order (because we start with the inner loop and add code outwards). At the begin-
ning of this stage, vectorisable is set to True. But after we encounter the first multi-valued symbol we set
vectorisable to False (we can only vectorise one loop, and it has to be the innermost one). This vectori-
sation is used by both Python and GPU but not C++. Each resolution step calls CodeItem.resolve() on
the output of the previous stage.

statements

class brian.experimental.codegen2.Statement
Just a base class, supposed to indicate single line statements.

class brian.experimental.codegen2.CodeStatement(code, dependencies, resolved)
A language-specific single line of code, which should only be used in the resolution step by a Symbol which
knows the language it is resolving to. The string code and the set of dependencies and resolved have
to be given explicitly.

convert_to(language, symbols={}, namespace={})

class brian.experimental.codegen2.CDefineFromArray(var, arr, index, dependencies=None,
resolved=None, dtype=None, refer-
ence=True, const=False)

Define a variable from an array and an index in C.

For example:

double &V = __arr_V[neuron_index];

Initialisation arguments are:

var The variable being defined, a string.

arr A string representing the array.

index A string giving the index.

dependencies Given explicitly, or by default use set([Read(arr), Read(index)]).

resolved Given explicitly, or by default use set([var]).

dtype The numpy data type of the variable being defined.

reference Whether the variable should be treated as a C++ reference (e.g. double &V = ... rather than
double V = .... If the variable is being written to as well as read from, use reference=True.

const Whether the variable can be defined as const, specify this if only reading the value and not writing to it.
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class brian.experimental.codegen2.MathematicalStatement(var, op, expr, dtype=None)
A single line mathematical statement.

The structure is var op expr.

var The left hand side of the statement, the value being written to, a string.

op The operation, can be any of the standard Python operators (including += etc.) or a special operator :=
which means you are defining a new symbol (whereas = means you are setting the value of an existing
symbol).

expr A string or an Expression object, giving the right hand side of the statement.

dtype If you are defining a new variable, you need to specify its numpy dtype.

If op==’:=’ then this statement will resolve var, otherwise it will add a Write dependency for var. The
other dependencies come from expr.

convert_to(language, symbols={}, tabs=0, namespace={})
When converting to a code string, the following takes place:

•If the LHS variable is in the set of symbols, then the LHS is replaced by sym.write()

•The expression is converted with Expression.convert_to().

•If the operation is definition op==’:=’ then the output is language dependent. For Python it is lhs
= rhs and for C or GPU it is dtype lhs = rhs.

•If the operation is not definition, the statement is converted to lhs op rhs.

•If the language is C/GPU the statement has ; appended.

brian.experimental.codegen2.statements_from_codestring(code, eqs=None,
defined=None, in-
fer_definitions=False)

Generate a list of statements from a user-defined string.

code The input code string, a multi-line string which should be flat, no indents.

eqs A Brian Equations object, which is used to specify a set of already defined variable names if you are
using infer_definitions.

defined A set of symbol names which are already defined, if you are using infer_definitions.

infer_definitions Set to True to guess when a line of the form a=b should be inferred to be of type
a:=b, as user-specified code may not make the distinction between a=b and a:=b.

The rule for definition inference is that you scan through the lines, and a set of already defined symbols is
maintained (starting from eqs and defined if provided), and an = op is changed to := if the name on the
LHS is not already in the set of symbols already defined.

brian.experimental.codegen2.c_data_type(dtype)
Gives the C language specifier for numpy data types. For example, numpy.int32 maps to int32_t in C.

Perhaps this method is given somewhere in numpy, but I couldn’t find it.

stateupdater

class brian.experimental.codegen2.CodeGenStateUpdater(group, method, language,
clock=None)

State updater using code generation, supports Python, C++, GPU.

Initialised with:

group The NeuronGroup that this will be used in.
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method The integration method, currently one of euler(), rk2() or exp_euler(), but you can define
your own too. See make_integration_step() for details.

language The Language object.

Creates a Block from the equations and the method, gets a set of Symbol objects from
get_neuron_group_symbols(), and defines the symbol _neuron_index as a SliceIndex. Then
calls CodeItem.generate() to get the Code object.

Inserts t and dt into the namespace, and _num_neurons and _num_gpu_indices in case they are needed.

symbols

class brian.experimental.codegen2.Symbol(name, language)
Base class for all symbols.

Every symbol has attributes name and languagewhich should be a string and Language object respectively.
The symbol class should define some or all of the methods below.

dependencies()
Returns the set of dependencies of this symbol, can be overridden.

load(read, write, vectorisable)
Called by resolve(), can be overridden to perform more complicated loading code. By default, returns
an empty Block.

multi_valued()
Should return True if this symbol is considered to have multiple values, for example if you are iterating
over an array like so:

for(int i=0; i<n; i++)
{

double &x = arr[i];
...

}

Here the symbol x is single-valued and depends on the symbol i which is multi-valued and whose resolu-
tion required a loop. By default returns False unless the class has an attribute multiple_values in
which case this is returned.

read()
The string that should be used when this symbol is read, by default just the symbol name.

resolution_requires_loop()
Should return True if the resolution of this symbol will require a loop. The resolve() function uses
this to optimise the symbol resolution order.

resolve(read, write, vectorisable, item, namespace)
Creates a modified item in which the symbol has been resolved.

For example, if we started from the expression:

x += 1

and we wanted to produce the following C++ code:

for(int i=0; i<n; i++)
{

double &x = __arr_x[i];
x += 1;

}
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we would need to take the expression x+=1 and embed it inside a loop.

Function arguments:

read Whether or not we read the value of the symbol. This is computed by analysing the dependencies
by the main resolve() function.

write Whether or not we write a value to the symbol.

vectorisable Whether or not the expression is vectorisable. In Python, we can only vectorise one
multi-valued index, so if there are two or more, only the innermost loop will be vectorised.

item The code item which needs to be resolved.

namespace The namespace to put data in.

The default implementation first calls update_namespace(), then creates a new Block consisting of
the value returned by load(), the item, and the value returned by save(). Finally, this symbol’s name
is added to the resolved set for this block.

save(read, write, vectorisable)
Called by resolve(), can be overridden to perform more complicated saving code. By default, returns
an empty Block.

supported()
Returns True if the language specified at initialisation is supported. By default, checks if the language
name is in the class attribute supported_languages (list), however can be overridden.

supported_languages = []

update_namespace(read, write, vectorisable, namespace)
Called by resolve(), can be overridden to modify the namespace, e.g. adding data.

write()
The string that should be used when this symbol is written, by default just the symbol name.

class brian.experimental.codegen2.RuntimeSymbol(name, language)
This Symbol is guaranteed by the context to be inserted into the namespace at runtime and can be used without
modification to the name, for example t or dt.

supported()
Returns True.

class brian.experimental.codegen2.ArraySymbol(arr, name, language, index=None, ar-
ray_name=None)

This symbol is used to specify a value taken from an array.

Schematically: name = arr[index].

arr (numpy array) The numpy array which the values will be taken from.

name, language The name of the symbol and language.

index The index name, by default ’_index_’+name.

array_name The name of the array, by default ’_arr_’+name.

Introduces a read-dependency on index and array_name.

dependencies()
Read-dependency on index.

load(*args, **kwds)
Method generated by language_invariant_symbol_method().

Languages and methods follow:
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python load_python()

gpu load_c()

c load_c()

load_c(read, write, vectorisable)
Uses CDefineFromArray.

load_python(read, write, vectorisable)
If read is false, does nothing. Otherwise, returns a CodeStatement of the form:

name = array_name[index]

supported_languages = [’python’, ‘c’, ‘gpu’]

update_namespace(read, write, vectorisable, namespace)
Adds pair (array_name, arr) to namespace.

write(*args, **kwds)
Method generated by language_invariant_symbol_method().

Languages and methods follow:

python write_python()

gpu write_c()

c write_c()

write_c()

write_python()
Returns array_name[index].

class brian.experimental.codegen2.NeuronGroupStateVariableSymbol(group, varname,
name, language,
index=None)

Symbol for a state variable.

Wraps ArraySymbol.

Arguments:

name, language Symbol name and language.

group The NeuronGroup.

varname The state variable name in the group.

index An index name (or use default of ArraySymbol).

class brian.experimental.codegen2.SliceIndex(name, start, end, language, all=False)
Multi-valued symbol that ranges over a slice.

Schematically: name = slice(start, end)

name, language Symbol name and language.

start The initial value, can be an integer or string.

end The final value (not included), can be an integer or string.

all Set to True to indicate that the slice covers the whole range possible (small optimisation for Python).

multiple_values = True
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resolution_requires_loop()
Returns True except for Python.

resolve(*args, **kwds)
Method generated by language_invariant_symbol_method().

Languages and methods follow:

python resolve_python()

gpu resolve_gpu()

c resolve_c()

resolve_c(read, write, vectorisable, item, namespace)
Returns item embedded in a C for loop.

resolve_gpu(read, write, vectorisable, item, namespace)
If not vectorisable return resolve_c(). If vectorisable we mark it by adding
_gpu_vector_index = name and _gpu_vector_slice = (start, end) to the names-
pace. The GPU code will handle this later on.

resolve_python(read, write, vectorisable, item, namespace)
If vectorisable and all then we simply return item and add name=slice(None) to the names-
pace.

If vectorisable and not all then we prepend the following statement to item:

name = slice(start, end)

If not vectorisable then we add a for loop over xrange(start, end).

supported_languages = [’python’, ‘c’, ‘gpu’]

class brian.experimental.codegen2.ArrayIndex(name, array_name, language, ar-
ray_len=None, index_name=None, ar-
ray_slice=None)

Multi-valued symbol giving an index that iterates through an array.

Schematically: name = array_name[array_slice]

name, language Symbol name and language.

array_name The name of the array we iterate through.

array_len The length of the array (int or string), by default has value ’_len_’+array_name.

index_name The name of the index into the array, by default has value ’_index_’+array_name.

array_slice A pair (start, end) giving a slice of the array, if left the whole array will be used.

Dependencies are collected from those arguments that are used (item, array_name, array_len,
array_slice).

multiple_values = True

resolution_requires_loop()
Returns True except for Python.

resolve(*args, **kwds)
Method generated by language_invariant_symbol_method().

Languages and methods follow:

python resolve_python()

c resolve_c()
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resolve_c(read, write, vectorisable, item, namespace)
Returns a C++ for loop of the form:

for(int index_name=start; index_name<end; index_name++)
{

const int name = array_name[index_name];
...

}

If defined (start, end)=array_slice otherwise (start, end)=(0, array_len).

resolve_gpu(read, write, vectorisable, item, namespace)
If not vectorisable, use resolve_c(). If vectorisable, we set the following in the namespace:

_gpu_vector_index = index_name
_gpu_vector_slice = (start, end)

Where start and end are as in resolve_c(). This marks that we want to vectorise over this index,
and the GPU code will handle this later. Finally, we prepend the item with:

const int name = array_name[index_name];

resolve_python(read, write, vectorisable, item, namespace)
If vectorisable it will prepend one of these two forms to item:

name = array_name
name = array_name[start:end]

(where (start, end) = array_slice if provided).

If not vectorisable, it will return a for loop over either array_name or array_name[start:end]‘.

supported_languages = [’python’, ‘c’, ‘gpu’]

brian.experimental.codegen2.language_invariant_symbol_method(basemethname,
langs, fall-
back=None,
doc=None)

Helper function to create methods for Symbol classes.

Sometimes it is clearer to write a separate method for each language the Symbol supports. This function can
generate a method that can take any language, and calls the desired method. For example, if you had defined
two methods load_python and load_c then you would define the load method as follows:

load = language_invariant_symbol_method(’load’,
{’python’:load_python, ’c’:load_c})

The fallback gives a method to call if no language-specific method was found. A docstring can be provided
to doc.

brian.experimental.codegen2.get_neuron_group_symbols(group, language, in-
dex=’_neuron_index’, pre-
fix=’‘)

Returns a dict of NeuronGroupStateVariable from a group.

Arguments:

group The group to extract symbols from.

language The language to use.

index The name of the neuron index, by default _neuron_index.

prefix An optional prefix to add to each symbol.
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threshold

class brian.experimental.codegen2.CodeGenThreshold(group, inputcode, language, level=0)

11.6 Brian package structure

List of modules with descriptions of contents:

Root package

base Shared base classes for some Brian clases. At the moment, just the ObjectContainer class used to imple-
ment the contained_objects protocol.

clock The Clock object, guess_clock() function, and other clock manipulation functions.

compartments A class used in compartmental modelling (see user documentation).

connection Everything to do with connections, including the Connection and DelayConnection classes,
but also construction/connection matrices and connection vector code. One of the longest and most technical
parts of Brian.

correlatedspikes A tool for producing correlated spike trains.

directcontrol Classes for producing groups which fire spikes at user specified times.

equations Everything to do with the Equations class.

globalprefs Global preferences for Brian, a few routines for getting and setting.

group A base class for NeuronGroup which creates an _S attribute from an Equations object with the ap-
propriate dynamical variables, and allows these variables to be accessed by e.g. grp.V by overriding the
__getattr__ and __setattr__ methods.

inspection Utility functions for inspecting namespaces, checking consistency of equations, some code manipula-
tion, etc.

log Brian’s somewhat under-developed logging capabilities.

magic Classes and functions for tracking and finding instances of classes.

membrane_equations More code for compartmental modelling (see user docs).

monitor All the monitors, including SpikeMonitor and StateMonitor.

network The Network and MagicNetwork classes as well as the NetworkOperation class. Also includes
the run(), etc. functions.

neurongroup The NeuronGroup definition and some related stuff, including linked variables (the LinkedVar
class) and PoissonGroup.

optimiser Some tools for freezing expressions (converting e.g. 3*ms into 0.003) and simplifying some equations
(e.g. a/(10*ms) converted to a*100).

plotting Plotting tools, mostly raster_plot.

quantityarray A leftover from the day when Brian had support for arrays with units, will be removed when
practical.

reset Reset classes.

stateupdater State update classes and the magic_state_updater() function.

stdp STDP features.
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stdunits Standard unit names such as mV for mvolt, etc.

stp Short term plasticity features.

threshold Threshold classes.

timedarray The TimedArray class and related functions.

units The Brian units package, including the Quantity class.

unitsafefunctions Some functions which override the numpy ones which are safe to use with units, e.g.
sin(3*volt) raises a dimensionality error.

‘‘library‘‘ subpackage

electrophysiology Electrophysiology library with electrode and amplifier models.

IF Integrate-and-fire models (leaky, quadratic, exponential...).

ionic_currents Ionic current models (K+, Na+...).

random_processes Currently only Ornstein-Uhlenbeck.

synapses Synaptic models (exponential, alpha and biexponential models).

‘‘utils‘‘ subpackage

approximatecomparisons Some tools for doing approximate comparisons with floating point numbers (be-
cause they are inexact).

autodiff Automatic differentiation routines (for single-valued functions).

circular and the ccircular subpackage The important SpikeContainer and related classes. The C ver-
sion uses SWIG and is much faster but requires the user to compile themselves at the moment (this will be
addressed at some point in the future).

documentation Some utility functions related to documentation.

information_theory Entropy and mutual information estimators. Requires the ANN wrapper in scikits.

parallelpython A utility function for using the Parallel Python module.

parameters The Parameters class, basically independent of Brian but potentially useful.

progressreporting A progress reporting framework which Network.run() can use to report how long it is
taking to run, with text or graphical options.

statistics Statistics of spike trains (CV, vector strength, correlograms...).

tabulate Tabulation of numerical functions (precalculation).

11.7 Repository structure

The Brian source code repository is broken into the following directories:

brian The main package, documented above, with the following additional directories:

deprecated For code that is no longer up to date, but that we keep for backwards compatibility.

experimental Package for storing experimental code that can be used but whose syntax and functionality
may change.

library Modules where specific models are defined (e.g. neuron and synaptic models).

tests Package for storing tests, composed of:
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testcorrectness Package for tests of mathematical correctness of algorithms, etc.

testinterface Package for tests of individual Brian modules. Module names are the names of the
module being tested prepended by ‘test’.

unused Old stuff

utils Modules that are not Brian-specific, for example circular.py defines circular arrays used for storing
spiking events.

dev The main development folder, for works in progress, debugging stuff, tools, etc. Consists of:

benchmarking Code for benchmarking performance against other languages and simulators.

BEPs The Brian Enhancement Proposals.

debugging Dumping ground for files used for debugging a problem.

troubleshooting Used for debugging problems from the brian-support mailing list.

ideas For ideas for new features, incomplete implementations, etc. This is where new things go before going
into the main Brian package or the experimental package.

logo The Brian logo in various sizes.

optimising Ideas for making Brian faster.

speedtracking A sort of testing framework which tracks, over time, the speed of various Brian features.

tests A few scripts to run Brian’s tests.

tools The main folder for developer tools.

docs Scripts for invoking Sphinx and building the documentation. Includes script to automatically gen-
erate documentation for examples and tutorials, and to build index entries for these.

newrelease Tools for creating a new public release of Brian.

searchreplace Some tools for doing global changes to the code (e.g. syntax changes).

dist Automatically generated distribution files.

docs Automatically generated documentation files in HTML/PDF format.

docs_sphinx Sources for Sphinx documentation.

examples Examples of Brian’s use. Documentation is automatically generated from all of these examples.

tutorials Source files for the tutorials, documentation is automatically generated from these. Each tutorial has a
directory, possibly containing an introduction.txt Sphinx source, followed by a series of files in alpha-
betical order (e.g. 1a, 1b, 1c, etc.). Multi-line strings are treated as Sphinx source code (take a look at a few
examples to get the idea).

See also the reference sheet. You can download a PDF version of the documentation here.
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