.. currentmodule:: brian .. index:: pair: example usage; sqrt .. _example-frompapers_Muller_et_al_2011: Example: Muller_et_al_2011 (frompapers) ======================================= Interplay of STDP and input oscillations ---------------------------------------- Figure 4 from: Muller L, Brette R and Gutkin B (2011) Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking. Front. Comput. Neurosci. 5:45. doi: 10.3389/fncom.2011.00045 Description: In this simulation, a group of IF neurons is given a tonic DC input and a tonic AC input. The DC input is mediated by current injection (neurons.I, line 62), and the AC input is mediated by Poisson processes whose rate parameters are oscillating in time. Each neuron in the group is given a different DC input, ensuring a unique initial phase. After two seconds of simulation (to integrate out any initial transients), the STDP rule is turned on (ExponentialSTDP, line 68), and the population of neurons converges to the theoretically predicted fixed point. As there is some noise in the phase due to the random inputs, the simulation is averaged over trials (50 in Figure 4, though 10 trials should be fine for testing). The trials run in parallel on all available processors (10 trials take about 2 minutes on a modern PC). :: ### IMPORTS from brian import * import multiprocessing ### PARAMETERS N=5000 M=10 taum=33*ms tau_pre=20*ms tau_post=tau_pre Ee=0*mV vt=-54*mV vr=-70*mV El=-70*mV taue=5*ms f=20*Hz theta_period = 1/f Rm=200*Mohm a = linspace(51,65,num=M) weights = .001 ratio=1.50 dA_pre=.01 dA_post=.01*ratio trials=10 ### SIMULATION LOOP def trial(n): # n is the trial number reinit_default_clock() clear(True) eqs_neurons=''' dv/dt=((ge*(Ee-vr))+Rm*I+(El-v))/taum : volt dge/dt=-ge/taue : 1 I : amp ''' inputs = PoissonGroup(N,rates=lambda t:((.5-.5*cos(2*pi*f*t)))*10*Hz) neurons=NeuronGroup(M,model=eqs_neurons,threshold=vt,reset=vr) neurons.I = a*pA synapses=Connection(inputs,neurons,'ge',weight=weights) neurons.v=vr S = SpikeMonitor(neurons) run(2*second) stdp=ExponentialSTDP(synapses,tau_pre,tau_post,dA_pre,-dA_post,wmax=10*weights,interactions='all',update='additive') run(5*second) phase=zeros((M,200)) for b in range(0,M): tmp_phase=(S[b]%theta_period)*(360/theta_period) phase[b,range(0,len(tmp_phase))] = tmp_phase return phase if __name__=='__main__': # This is very important on Windows, otherwise the machine crashes! phase = zeros((M,200,trials)) print "This will take approximately 2 minutes." pool=multiprocessing.Pool() # uses all available processors b results=pool.map(trial,range(trials)) for i in range(trials): phase[:,:,i]=results[i] ### PLOTTING for b in range(0,M): m = mean(phase[b,:,:],axis=1) st = std(phase[b,:,:],axis=1)/sqrt(trials) errorbar(range(0,135), m[range(0,135)], yerr=st[range(0,135)], xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False) title('STDP + Oscillations Simulation') xlabel('Spike Number') ylabel('Spike Phase (deg)') xlim([0, 135]) ylim([140, 280]) show()