.. currentmodule:: brian .. index:: pair: example usage; NeuronGroup pair: example usage; run pair: example usage; PopulationRateMonitor pair: example usage; PopulationSpikeCounter pair: example usage; Synapses pair: example usage; Equations .. _example-synapses_CUBA: Example: CUBA (synapses) ======================== CUBA example with delays. Connection (no delay): 3.5 s DelayConnection: 5.7 s Synapses (with precomputed offsets): 6.6 s # 6.9 s Synapses with weave: 6.4 s Synapses with zero delays: 5.2 s :: from brian import * import time start_time = time.time() taum = 20 * ms taue = 5 * ms taui = 10 * ms Vt = -50 * mV Vr = -60 * mV El = -49 * mV eqs = Equations(''' dv/dt = (ge+gi-(v-El))/taum : volt dge/dt = -ge/taue : volt dgi/dt = -gi/taui : volt ''') P = NeuronGroup(4000, model=eqs, threshold=Vt, reset=Vr, refractory=5 * ms) P.v = Vr P.ge = 0 * mV P.gi = 0 * mV Pe = P.subgroup(3200) Pi = P.subgroup(800) we = (60 * 0.27 / 10) * mV # excitatory synaptic weight (voltage) wi = (-20 * 4.5 / 10) * mV # inhibitory synaptic weight Se = Synapses(Pe, P, model = 'w : 1', pre = 'ge += we') Si = Synapses(Pi, P, model = 'w : 1', pre = 'gi += wi') Se[:,:]=0.02 Si[:,:]=0.02 Se.delay='rand()*ms' Si.delay='rand()*ms' P.v = Vr + rand(len(P)) * (Vt - Vr) # Record the number of spikes Me = PopulationSpikeCounter(Pe) Mi = PopulationSpikeCounter(Pi) # A population rate monitor M = PopulationRateMonitor(P) print "Network construction time:", time.time() - start_time, "seconds" print len(P), "neurons in the network" print "Simulation running..." run(1 * msecond) start_time = time.time() run(1 * second) duration = time.time() - start_time print "Simulation time:", duration, "seconds" print Me.nspikes, "excitatory spikes" print Mi.nspikes, "inhibitory spikes" plot(M.times / ms, M.smooth_rate(2 * ms, 'gaussian')) show()