.. currentmodule:: brian .. index:: pair: example usage; Synapses pair: example usage; PoissonGroup pair: example usage; run pair: example usage; PopulationRateMonitor pair: example usage; NeuronGroup .. _example-synapses_STDP1: Example: STDP1 (synapses) ========================= Spike-timing dependent plasticity Adapted from Song, Miller and Abbott (2000) and Song and Abbott (2001) This simulation takes a long time! :: from brian import * from time import time N = 1000 taum = 10 * ms taupre = 20 * ms taupost = taupre Ee = 0 * mV vt = -54 * mV vr = -60 * mV El = -74 * mV taue = 5 * ms F = 15 * Hz gmax = .01 dApre = .01 dApost = -dApre * taupre / taupost * 1.05 dApost *= gmax dApre *= gmax eqs_neurons = ''' dv/dt=(ge*(Ee-vr)+El-v)/taum : volt # the synaptic current is linearized dge/dt=-ge/taue : 1 ''' input = PoissonGroup(N, rates=F) neurons = NeuronGroup(1, model=eqs_neurons, threshold=vt, reset=vr) S = Synapses(input, neurons, model='''w:1 Apre:1 Apost:1''', pre='''ge+=w Apre=Apre*exp((lastupdate-t)/taupre)+dApre Apost=Apost*exp((lastupdate-t)/taupost) w=clip(w+Apost,0,gmax)''', post=''' Apre=Apre*exp((lastupdate-t)/taupre) Apost=Apost*exp((lastupdate-t)/taupost)+dApost w=clip(w+Apre,0,gmax)''') neurons.v = vr S[:,:]=True S.w='rand()*gmax' rate = PopulationRateMonitor(neurons) start_time = time() run(100 * second, report='text') print "Simulation time:", time() - start_time subplot(311) plot(rate.times / second, rate.smooth_rate(100 * ms)) subplot(312) plot(S.w[:] / gmax, '.') subplot(313) hist(S.w[:] / gmax, 20) show()